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ABSTRACT

Investigation of the fractal behaviour of unvoiced
plosive consonants leads to interesting observations
towards their classi�cation. Experimental evidence
of the fractal nature of the speech signals themselves,
as well as of their derivatives and cumulative sums
prompt the use of the associated fractal dimensions
to form a discriminative feature set. The obtained
feature set is compact in representation and easy to
compute. At the same time, the discriminating capa-
bility of this feature set is seen to be promising even
for speech signals sampled at 8KHz.

1. INTRODUCTION

Unvoiced plosives or stops (/k/, /p/ and /t/) corre-
spond to nonstationary, irregular and aperiodic ran-
dom processes which, unlike voiced sounds, can not
be modelled by linear ARMA-type models. Figure 1
depicts a typical example of each one of these sounds.

This inherent irregularity makes modelling and
recognition of unvoiced plosives a challenging task.
Standard speech recognition methods which attempt
to perform classi�cation via context-dependent ap-
proaches (see e.g., [2], [3], [7]) have limited applica-
bility, as they require that the unknown plosive lie in
a certain context (e.g., triphone models).

Previous attempts for their context-independent
characterization include non-parametric, time - fre-
quency representations. In [8], for example, features
extracted from the Wigner distribution are employed
in appreciation of the non-stationary nature of un-
voiced stops.

In this work, the fractal nature of unvoiced plo-
sives is investigated. It is experimentally veri�ed that
all three unvoiced plosives as well as their time in-
tegrals and derivatives exhibit a fractal behaviour,
with signi�cant self-similarity in an extended range of
scales. Moreover, this behaviour is consistent within
the same sound, while it is diversi�ed across sounds.
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Figure 1: An example of unvoiced plosive consonant
signals /k/, /p/ and /t/.

Based on these observations, the aim of the present
work is to propose a �nite set of parameters which
are discriminative enough to qualify for a classi�ca-
tion feature vector.

The proposed use of fractal-based features for clas-
si�cation (i) o�ers a computationally attractive alter-
native to non-parametric time-frequency based meth-
ods, (ii) is parametrized by a much smaller set of pa-
rameters - an advantage for the classi�cation step it-
self. The resulting classi�cation scheme can either be
considered as a stand-alone tool or be incorporated
in a standard context-based classi�cation method to
improve its performance.

In the following, notation related to fractals and
fractal dimension is established in context of speech



signals in Section 2 while in Section 3 are given the
proposed feature set and its properties along with ex-
amples for their computation from real speech data.

2. BACKGROUND ON FRACTAL

MEASURES

Fractals have been used in signal processing thanks
to their ability to model self-similarities in the do-
main of signals and/or their statistics (moments) ob-
served over a range of di�erent scales (resolutions),
([1]). Fractals also provide a means for modelling
long-term dependencies in the signal, corresponding
to long tails of the moment statistics. In particu-
lar, the use of fractals in speech processing has been
treated in [5].

Fractal dimension, a measure of the fragmenta-
tion of a fractal signal, has been de�ned in various
forms, ([1]). Several practical methods for its esti-
mation have been proposed. In the present work we
adopt the Minkowski-Bouligand dimension de�nition
DM , and use the morphological covering method pro-
posed in ([6]) for its estimation,

DM = lim
�!0

( 2�
log[A(�)]

log(�)
); (1)

where A(�) represents the area between the dilation

and the erosion of the signal graph, obtained using a
structure element of size proportional to �. In prac-
tice, for discrete-time signals, the limiting structure
element is of radius 1, corresponding to either a 3� 3
rectangle, or a 5-point rhombus or a 3-point hori-
zontal segment. A computationally e�cient 1-D pro-
cedure for the implementation of the morphological
covering of 1-D signals has been proposed in ([6]).

In the neighbourhood of zero, eq. (1) can take the
approximate form

log
A(�)

�2
= DM log (

1

�
) + constant; (2)

which represents a line of slope DM in the ( log
A(�)

�2
;

log ( 1
�
) ) plane. For one-dimensional signals, a value

of 1 < DM < 2 signi�es a fractal, while non-fractal
signals have DM = 1.

For signals that are ideal fractals, equation (2)
holds true not only for � lying in the neighbourhood
of zero, but for any �. However, real life signals are
rarely exhibiting such a perfect behaviour. Therefore,
for such signals it is meaningful to examine equation
(2) in a local manner. This is equivalent to �tting
straight line segments locally, after partitioning the
range of log ( 1

�
) under examination into a set of suc-

cessive disjoint intervals. This procedure produces a
sequence of di�erent slopes which hereafter we call
Local Fractal Dimension (LFD), after [6].

3. FRACTAL DIMENSION OF

UNVOICED PLOSIVES

In order to investigate the fractal behaviour of un-
voiced plosives, the fractal dimension of

(i) the speech signals themselves, s(n),

(ii) their running averages (cumulative sums), c(n) =Pn

i=0 s(i) and

(iii) their discrete derivatives (increments), d(n) =
s(n)� s(n� 1),

has been computed as the slope of the line in equation
(2). The slope has been computed for a set of 100
decreasing scales �. The motivation for considering
the fractal properties of c(n) and d(n) comes from
the case of the fractional Brownian motion, where it
is the increments rather than the process itself which
exhibit fractal behaviour, [4].

For the purposes of this study a pool of 50 un-
voiced plosive sounds (20 /k/, 10 /p/, 20 /t/) were
extracted from TIMIT speech database, at an 8 KHz
A/D sampling rate, without any constrain as to the
context, the speaker identity or the speaker sex.

Figures 2.a, 2.b and 2.c show the fractal dimen-
sion estimates for s(n); c(n); d(n), respectively. All
three plots are indexed by the signal number, (for /k/
(1; : : : ; 20), connected by solid line, for /p/ (1; : : : ; 10),
connected by dashed line and for /t/ (1; : : : ; 20), con-
nected by dotted line).

The main observations made from these �gures
are that

1. fractal dimension DM is signi�cantly greater
than 1 for all the cases examined, which veri�es
the fractal nature of s(n), c(n) and d(n);

2. the behaviour of sound /p/ in the running av-
erage domain (Figure 2.b, 10 middle values) is
systematically di�erent than that of /k/ and
/t/. This makes the fractal dimension DM

of the running average c(n) a candidate feature
for discrimination among /p/ and the other two
sounds;

3. /k/ and /t/ can not be discriminated on the
basis of DM alone.

In view of the last observation, the local fractal di-
mension, LFD, has been examined for the same signal
cases of s(n), c(n) and d(n). For the purposes of this
experiment, the log ( 1

�
) horizontal axis was parti-

tioned in L = 20 non-overlapping intervals of equal
length, covering 0 < � < 1. The values of the LFD se-
quences have been used to form vectors ls, lc and ld of
dimension L�1, for s(n), c(n) and d(n), respectively.

From the study of the obtained LFDs it was con-
cluded that increased separability of the three sounds
is obtained on the basis of those LFD coe�cients cor-
responding to the �nest scales (resolutions). Figures
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Figure 2: Fractal dimensions of signals (a) s(n), (b)
c(n) and (c) d(n). Each subplot shows the fractal
dimension DM of (i) the 20 /k/ signals (solid line),
(ii) the 10 /p/ signals (dashed line) and (iii) the 20
/t/ signals (dotted line).

0 2 4 6 8 10 12 14 16 18 20
1

1.5

2

(a
)

0 2 4 6 8 10 12 14 16 18 20
1

1.5

2

(b
)

0 2 4 6 8 10 12 14 16 18 20
1

1.5

2

(c
)

Figure 3: Local fractal dimensions of signals (a) s(n),
(b) c(n) and (c) d(n) at the �nest scale L = 20. Each
subplot shows the LFD l(L) of (i) the 20 /k/ signals
(solid line), (ii) the 10 /p/ signals (dashed line) and
(iii) the 20 /t/ signals (dotted line).
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Figure 4: The spread of the proposed two-
dimensional feature vector v in the feature space. /k/,
/p/ and /t/ are denoted by circle, star and cross signs,
respectively. Even a linear classi�er would achieve
high classi�cation scores.

3.a, 3.b and 3.c show the LFD values obtained in the
�nest of the L = 20 scales examined, for s(n), c(n)
and d(n), respectively. The horizontal axis is indexed
by the signal number, as in Figure 2. As it can be seen
in Figure 3, the derivative d(n) is more discriminative
with respect to the /k/ and /t/ behaviour.

Consequently, for classi�cation of the three sounds
the proposed feature vector includes the features

v = [DM;c; ld(L)]: (3)

Figure 4 shows the feature values of v computed
for the set of 50 samples from the TIMIT speech
database, as mentioned above. Features obtained
from /k/, /p/ and /t/ are denoted by circle, star and
cross signs, respectively. From this �gure it can be
seen that the proposed feature vector v yields satis-
factory class separation. Moreover, class separability
is expected to improve if signals of a higher sampling
rate are used.

Finally, the consequent classi�cation step can be
carried out using any standard classi�er, such as LVQ,
although even simpler linear classi�ers might be ade-
quate, as it can be inferred based on Figure 4.

4. CONCLUSIONS - FURTHER

RESEARCH

The fractal behaviour of unvoiced plosive consonants
is experimentally veri�ed in the present work. More-
over, the same behaviour is exhibited by their discrete-



time derivative and cumulative sum signals. Although
the time plots of unvoiced stops do not allow even for
their crude classi�cation by inspection, since they do
not exhibit a systematic similarity, their fragmenta-
tion and the associated fractal consistently assume
ranges of values that allow for their characterization.
The proposed feature set is compact in representa-
tion and promising for utilization in a context- and
speaker-independent speech recognition task.

More extensive experimentation is necessary, how-
ever, in order to obtain statistically signi�cant classi-
�cation scores. On the other hand, given the fact that
speech signals are the output of the human speech
generation mechanism, it is interesting to conduct
further research in order to reveal the physiological
factors that are responsible for this behaviour.
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