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ABSTRACT

This paper presents the use of a simulated annealing
technique during the parameters estimation of a Hidden
Markov Model (HMM) in a speech recognition system.
This technique allows to move out of a local optimum
which  characterizes a  classical  Expectation
Maximization (EM) algorithm, and thus to achieve a
better estimation with a limited amount of training data.

We choose here the Simulated Annealing Expectation
Maximization (SAEM) algorithm introducing a
simulated annealing technique in the EM method. The
SAEM algorithm is compared to the classical EM
algorithm, for both task-independent and task-dependent
Viterbi training. The evaluation leads to significant
improvement of recognition performances.

1. INTRODUCTION

In a speech recognition system, the acoustic model
classically used is HMM-based. In order to achieve a
reliable estimation of the HMM parameters, according to
the Maximum Likelihood (ML) criterion, the EM
algorithm is the most popular method used [1].

One of the EM algorithm’s drawbacks is that it
converges to a local optimum, especially if little amount
of training data is available. An other solution is the use
of the well-known simulated annealing technique to
escape from local optima [2]. Simulated annealing is a
randomized perturbation technique which enables to
move out of a local optimum.

This technique may optimize the HMM structure, when
applied to the parameter ties or the clustering of phonetic
contexts in a speech recognition system [3].
Nevertheless this  optimization concerns discrete
parameters.

Another kind of parameters perturbation is a Gaussian
density splitting, which consists in slightly perturbing
the initial parameter set [4]. This perturbation is

performed at the beginning of the training phase and
concerns the Gaussian density mean vector.

In this paper, we choose a simulated annealing technique
which may lead to improve the ML estimation
algorithm. We adapt the SAEM algorithm [5] which uses
a simulated annealing technique in a classical EM
iterative procedure for the parameters estimation of a
Continuous Mixture Densities HMM.

The first part of the paper describes the SAEM algorithm
which includes a simulated annealing technique in each
EM algorithm iteration. SAEM technique is described
here in the specific matter of speech recognition system
parameters estimation. The SAEM algorithm is adapted
to the Viterbi parameters estimation.

In the second part, speech recognition experiments
enable a comparison between the classical EM algorithm
and the SAEM algorithm with task-independent or task-
dependent training. Then we evaluate this technique with
a limited amount of data used during a task-dependent
training, where this kind of perturbation is most
appropriate.

2. SAEM ALGORITHM

SAEM is adapted here to a classical HMM parameters
estimation. This simulated annealing technique adds two
steps to the classical EM.

2.1. HMM Parameters Estimation

In the proposed approach the considered model
parameters A = (A, B, «) are given by:

- N, the number of states in the HMM and g,, the
occupied state at time t.
- A, the state transition probability matrix such as:
A = {a;} where a; = Pr(q,,, = jlq, = i)
with 1<i, j<N and 1<t<T.



- B, the set of sub-processes observation distributions,
chosen to be a mixture of Gaussian with diagonal
covariance matrices, given by:

B = {bi(0o)}

bio) =plojq,=1) = X ciN(o: Wik Zik)
1<k<NG

which may have the following approximation:

bi(o) = Max {cjt.N(o; Wik, Zik)}
1<k<NG

with 1<i<N and 1<t<T,

and where N(.;ujr, Zi) is a Gaussian density with g,
the mean vector and Z;, the diagonal covariance matrix
and where ¢ is the Gaussian component weight. NG is
the number of Gaussian components of the Gaussian
distribution mixture.

- 1, the initial state distribution:
n=(m)etnm=Pr(q,=1)
with 1<i<N.
For a sake of simplicity, we consider here only the case
of mono-Gaussian density. The parameters re-estimation
procedure leads to the following formulas (EM

algorithm), where o and P are respectively the forward
_ and the backward variables [6]:
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with 1<i, j<N and 1<t<T,
and where:

(i) = P(0y,....00 G = i / &)

B(i) = P(0y; 1507/ G = 1, 1)
va(‘d) = P(¢=1,9..,=j / O.4)
Y(i)=P(g=i/ OA)

N
It is to be noticed that y,(i) = ,Zl@,(i,j).
i=

The problem is the optimum locality within the EM
algorithm. In order to overcome this problem a
simulated annealing technique, the SAEM algorithm, is
introduced during the speech recognition model training.

2.2. SAEM Description

Between the step E, corresponding to the estimation of
the auxiliary function, i.e. the conditional expectation of
the logarithm of y, and the step M, relative to the
maximization of the auxiliary function, appearing in the
classical EM algorithm, two steps are inserted.

These two steps, called S and A, are simulated annealing
steps. The step S means a randomized perturbation of the
estimated parameters for each observation. The step A
enables to take into account these simulated annealing
evaluations for the new estimation of the parameters.
These steps applied to an HMM parameters training lead
to the following A and S steps description.

During step S and for each couple of observation vectors
(0,.0,.;) a random variable r(i,j) is realized for each
transition (i,j) in the model. r,(i,j) follows a multinomial
distribution of order 1 with parameter £ (i,j). In step A,
the probabilities of the association between the elements
(0.0.,,) and the states (i,j) are modified using the
variable r(i,j):

E(i) = &(id) * py [r(i) - E(0)]
where p, is a decreasing temperature, n being the
iteration number. Looking the preceding equation, it can

be found that the expectation of E is equal to the

expectation of &, and its variance is-equal to pﬁ(ﬁ,(l—&)).
Thus, the effects of the perturbations decrease with the
iterations (since p, decreases with the number n of
iterations). Besides, the perturbation is more important
for £ close to 1/2.

The re-estimation formulas remain the same as for the
EM algorithm, replacing the y and & by their new
estimated values.

We assume the SAEM algorithm convergence with a
Continuous Mixture Densities HMM system as it is
demonstrated in [2]. This convergence needs specific
simulated annealing parameters values. That means an



initial perturbation amplitude and a temperature
decreasing speed superior to 0 and below 1.

2.3. SAEM Application for Viterbi Estimation

During the HMM parameters estimation with a Viterbi
algorithm, the previous re-estimation formulas are
rewritten as described below.

With Viterbi training £ € {0,1}. For this reason, the
parameter of the multinomial distribution of r(i,j)
variable should be chosen a priori. Here, we choose to
fix this parameter to 1/2 corresponding to the maximum
perturbation in the exact SAEM.

For each frame, during the n™ iteration, the step S is
defined as:

If the drawing of lots, which is here a simple toss, is
positive:

Eij) = (1 - py) Eij) for £ =1 only,
else

E (i) = £(i) for £ = | only.

In this case, the expectation of E is equal to:

EIE ()] - i) - 2 g - 1- 2

and its variance

2 2
EIE (1) - £ = 2 € i)y = 2

The preceding equations show that the perturbations
decrease with the number of iterations. It is to be noticed
that, for the optimal path, since £€ {0,1}:

~ N _ .
1) = El E(1) = &(1jo) = 1

Jjo being the state for which Et(i,j) = 1. Then, the same
perturbations affect directly the y,(i) parameters, and the

resulting ?t(i) are directly replaced in the re-estimation
formulas.

The parameters perturbation advantage are illustrated
with a HMM trained with a classical EM compared to
the SAEM adaptation described above.

3. EXPERIMENTS

The algorithm is evaluated in a speech recognition
system on three telephone databases. Experiments are
performed with two different training; a task-
independent training and a task-dependent training.
These estimations follow a Viterbi algorithm.

3.1. Training and Test Databases

The training corpus for the task-independent system and
for the initialization of every task-dependent system is
made of about 700 short sentences recorded by hundred
of speakers calling from different regions of France.
This telephone database contains almost all the French
diphones.

For evaluations and task-dependent system training,
three isolated words telephone databases recorded by
800 speakers are used. Table | presents the records
amount of these databases in the training step and in the
test step.

Table 1: Characteristics of databases.

Database Training Records Tests Records
Digits (7 to 9) 3555 3622
Numbers (00 ro 99) 7304 7288
Trégor (36 words) 12719 12842

3.2. Comparison Between SAEM and EM

Recognition performances relative to a SAEM Viterbi
training are compared to a classical EM Viterbi training
performances first with a task-independent training then
with a task-dependent training.

Figure 1 presents error rates for the three corpora with a
task-independent training in terms of error rates.
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Figure 1: EM / SAEM comparison for task-independent
system.

In the case of a task-independent system, the estimation
of the HMM parameters is less reliable because a lack of
appropriate data. In the optimal case, the use of the
adapted SAEM yields to an error reduction from of 8%
for the Numbers and of 12% for the Digits and Trégor
compared with the results obtained with a classical EM
training. This reduction is significant with respect to a
95% confident interval.



Figure 2 presents evaluation results with a task-
dependent training.
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Figure 2: EM / SAEM comparison for task-dependent system.

In a task-dependent system, the corpus used during the
training depends on the vocabulary application. The
main result is that the error rate reduction is 12% for the
Trégor, 13% for the Numbers and 22% for the Digits
compared to the model estimated with a classical EM
algorithm. The reduction with task-dependent training
data is not significant for the Trégor evaluation (95%
confident interval).

Results show better recognition performances for SAEM
Viterbi training compared to a classical EM Viterbi
training, whatever the corpus or the task dependence
 during the training may be. These improvements are
more significant with a task-independent training than
with a task-dependent training.

3.3. Limited Amount of Data

Simulated annealing technique is also evaluated with a
limited amount of data. The following experiments
involve two telephone databases which are continuous
speech corpus described in Table 2 and in Table 3.
These corpora consist of answers about date and time of
the recording.

Table 2: Characteristics of continuous speech training corpus.

Database Training Records

Dates (175 words) 1256 (5474 words)

Hours (215 words) 1280 (5391 words)

Models are evaluated with speaker-independent and
speaker-dependent recognition tests.

Table 3: Characteristics of continuous speech test corpus.

Database S1 Tests Records SD Tests Records
Dates (175 words) | 275 (1175 words) 1330 (5782 words)
Hours (215 words) {267 (1170 words) 1334 (5430 words)

Speaker-independent and speaker-dependent recognition
performances are reported in Figure 3. Relative rate of
the adapted SAEM training error rate compared to the

classical EM training error rate are described with these
models.
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Figure 3: EM / SAEM error rate reduction for a limited
amount of training data with speaker-independent recognition
and speaker-dependent recognition.

For these corpus, the evaluations show significant error
rate reduction respect to a 95% confident interval
compared to a classical EM.

4. CONCLUSION

In this paper it is suggested to use SAEM algorithm in
order to train HMM parameters. We adapt it to a Viterbi
training in a speech recognition system.

This adaptation leads to an improvement of recognition
performances compared to a classical EM approach in
task-independent and in task-dependent training.
Moreover, in the case of a limited amount of training
data, using a perturbation technique leads to a decrease
in the error rate.
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