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ABSTRACT”

Recently, the set of spectral parameters of every speech
frame that result from filtering the frequency sequence of
mel-scaled filter-bank energies with a simple first-order
high-pass FIR filter have proved to be an efficient speech
representation in terms of both speech recognition rate
and computational load. In this paper, we apply the same
technique to speaker recognition. Frequency filtering
approximately equalizes the cepstrum variance,
enhancing the oscillations of the spectral envelope curve
that are most effective for discriminating between
speakers. In this way, even better speaker identification
results than using conventional mel-cepstrum were
observed in continuous observation Gaussian density
HMM, especially in noisy conditions.

1. INTRODUCTION

Cepstral coefficients C(m), 1sm<M, are the usual way
of representing the short-time spectral envelope of a
speech frame in current speaker recognition systems.
These parameters are by far the most prevalent
representations of speech signal [1] [2] and contain a
high degree of speaker specificity [3]. The conventional
mel-cepstrum coefficients come from a set of Q mel-
scaled log filter-bank energies (LFBE) S(k), k=1,...,Q.

The sequence of cepstral coefficients C(m) is a quasi-
uncorrelated and compact representation of speech
spectra. In fact, in the mel-cepstrum representation, the
discrete cosine transform is an approximation of the
optimal Karhunen-Lo ve transform. The quefrency
sequence C(m) is always windowed before entering a
distance or probability computation in the pattern
matching stage of the recognition process. That window
eliminates the cepstral coefficients beyond a quefrency
M. And, for some type of recognition systems, it also
appropriately weights the remaining coefficients [3] [4]

[5116].

However, we may wonder if the cepstral coefficients are
the best way of representing the speech spectral
envelope, at least for some usual recognition systems. In
fact, cepstral coefficients have at least three
disadvantages: 1) they do not possess a clear and useful
physical meaning as LFBE have; 2) they require a linear
transformation from either LFBE or the LPC
coefficients; and 3) in continuous observation Gaussian
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density HMM with diagonal covariance matrices, the
shape of the cepstral window has no effect so that only
its length, i.e. the number of parameters M, is a control
variable.

In recent papers [7] [8], in order to try to overcome those
disadvantages, the authors present an alternative to the
use of cepstrum in speech recognition that consists of a
simple linear processing on the LFBE domain. The
transformation of the sequence S(k) to cepstral
coefficients is avoided by filtering that sequence. We
hereafter will call this operation frequency filtering to
denote that the convolution is performed in the frequency
domain.

As shown in [7], frequency filtering produces both
effects, decorrelation and weighting, in only one step
using a simple high-pass first or second order FIR filter.
Moreover, frequency filtering is able to produce a cepstral
weighting in an implicit way in continuous observation
Gaussian density HMM with diagonal covariance
matrices.

The aim of this paper is twofold: 1) to find an
appropriate quefrency weighting for speaker recognition
(section 2); and 2) to show that this discriminative
quefrency weighting can be performed by filtering the
sequence of LFBE (section 3). In this way, even better
speaker identification results than using conventional
mel-cepstrum were observed in continuous observation
Gaussian density HMM, especially in noisy conditions
(section 4).

2.DECORRELATION AND
DISCRIMINATION

The filter-bank-based spectral estimate, implemented
with the DFT (or more efficiently with the FFT), is a
way to obtain a small set of parameters, the so-called
filter-bank energies, that represent the speech spectrum
envelope in a given frame. It actually removes pitch
information and reduces estimation variance (error) by
integrating the periodogram (the square value of the DFT
samples) in frequency bands. And it offers the possibility
of easily distributing the position of the bands in the
frequency axis and defining their width in any desired
way. For this purpose, a mel or a Bark scale are
traditionally employed.

HMM are mostly employed with diagonal covariance
matrices. In that case, they implicitly assume
uncorrelated spectral parameters. That is true for the
Gaussian pdf of continuous density HMM (CDHMM)
and semicontinuous density HMM (SCHMM), and also



for the Mahalanobis distance of discrete HMM.
Conversely, the frequency sequence of log filter-bank
energies LFBE S(k) is strongly correlated. The usual
mel-cepstrum are a way of obtaining from S(k) an
almost uncorrelated set of parameters. Actually, by
approximating the random process S(k) with a first-order
Markov model, it follows that the discrete cosine
transform is almost equivalent to the Karhunen-Lo ve
transform.

Decorrelation is thus a desired property for the sets of
spectral parameters due to the particular way they are
used in our current recognition systems. And also
because decorrelation may provide a less redundant
representation. Nevertheless, what is really relevant to
the own classification process is the discrimination
capacity of those parameters.

It is a known fact that the variance of C(m) decreases
along the axis m [5]. Figure 1 shows an estimation of
this variance for the TIMIT database [9] using Q=20 mel-
scaled frequency bands. Note the zero value corresponding
to zero quefrency, which is caused by the subtraction of
the average S(k) value.
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Fig. 1. Variance of the cepstral coefficients for the
TIMIT database.

Thus, the low quefrencies m will generally dominate the
probability or distance computations in the classifier [7].
We may ask whether this is the best we can do or a
proper global variance equalization of C(m) could help to
increase recognition performance, much like it occurs in
speech recognition [7] [8]. Let us note that there exists a
close relationship between equalization of the variance of
C(m) at low quefrencies and decorrelation of S(k).

However, a flat variance may not be the most adequate
goal for recognition purposes. For example, when the
frequency interval between bands is not large enough,
that equalization gives too much weight to the
estimation noise carried out by C(m) for high
quefrencies. Another reason for not flattening it
completely can be the presence of the acoustic channel
characteristics or broad-band additive noise, which may
require a stronger attenuation of the lowest quefrencies.

A possible measure of the discrimination capacity of
each cepstral coefficient can be the ratio between its
inter-speaker and global variances. Figure 2 shows an
estimation of this ratio for the TIMIT database using
Q=20 mel-scaled frequency bands.
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Fig. 2. Estimation of the ratio between inter-speaker and
global cepstrum variances for the TIMIT database

As it can be seen in Figure 2, the dynamic range of this
ratio sequence is smaller than that of the global variance
shown in Figure 1. This fact suggests that an
approximate equalization of the variance can help to
increase the discrimination capability of the cepstral
sequence, at least for clean speech.

On the other hand, Figure 2 shows a slight increasing
tilt along the quefrency index m. This fact leads to think
that the most discriminative information is located in the
higher quefrencies, i.e. in the fast alternation of peaks
and valleys of the spectral curve; and it is not in the
lowest quefrencies, i.e. in the spectral tilt. Actually,
most speaker recognition systems do use a higher
number of cepstral parameters than speech recognizers.
Even it could be convenient to slightly overemphasize
the higher quefrencies.

Cepstral liftering (weighting on m) has been the usual
way to compensate for the excessive weight of the
lowest m terms in both speech and speaker recognition
systems. In this case, two steps are needed for obtaining
the final parameters from the log filter-bank energies: 1)
a linear transformation (discrete cosine transform), that
significantly decorrelates the sequence of parameters, and
2) a weighting (liftering) of the cepstral coefficients.
Furthermore, in continuous observation Gaussian density
HMM with diagonal covariance matrices, the shape of
the cepstral window has no effect due to the intrinsic
variance normalization of the Gaussian pdf.

3. FREQUENCY FILTERING

We aim to perform an approximate equalization of the
variance of the cepstral coefficients by filtering the
frequency sequence of log filter-bank energies LFBE.
Since this filtering is implemented as a circular



convolution with the sequence h(k), the cepstral
coefficients are multiplied -weighted- by the DFT of
h(k), here denoted by H(m).

First of all, since in the usual mel-scaled filter-bank there
are not any filters centered at frequencies w=0 and w=mn, a
zero is appended at both ends of the sequence, i.e.
S(0)=S(Q+1)=0, to represent the low energy contained at
those extreme bands. Then, according to the usual
practice [2], in every frame, the average value of the even
sequence S(k) over index k is subtracted.

After that, S(k) is circularly convoluted with h(k) to
obtain a filtered sequence. Since only the values of the
filtered sequence between k=1 and k=Q are used as
observations in the recognition system, we can employ
the shortest h(k), i.e. a length 2, with no interference of
the symmetric S(k), k=-1,..-Q, samples in the
computation of the used segment of the filtered sequence.
In this way, we can refer to the process as an actual
linear filtering, with h(k) being the impulse response.

A first-order FIR filter that maximally equalizes the
variance of the cepstral coefficients can be easily obtained
by a least-squares modeling in the following way.
Firstly, the variance is estimated by averaging over all
the frames of a given database. Then, after performing an
inverse DFT, the quotient r between the values of the
resulting sequence —the variance of S(k)- at index 1 and
index Q is computed. Thus, the first-order FIR filter that

maximally flattens the variance will be H(z)=1—rz‘1.

Figure 3 shows the product of the cepstrum global
variance corresponding to the TIMIT database [9] using
Q=20 mel-scaled frequency bands -shown in Figure 1- by
the magnitude of the sampled filter response H(m), that
was computed following the above procedure. The
resulting value of r is 0.75. As it can be seen, the
cepstrum variance tilt has been approximately equalized.
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Fig. 3. Cepstrum variance equalized by the sampled filter
response H(m).

However, the filtered LFBE representation (FLFBE) may
improve its performance if this frequency filter is
empirically optimized, perhaps taking into account the
slight increasing tilt along the axis m of the ratio
between inter-speaker and global cepstrum variances
shown in Figure 2.

Finally, it is worth noting the computational simplicity
of filtering with respect to the mel-cepstrum
representation. A way of forther reducing the

computations is to use the filter z—z‘l, since it does not
need products and avoids the average subtraction due to
its zero at zero quefrency. It consists in subtracting the
two LFBE of the bands adjacent to the current one. That
simple filter does not depend on the database and it seems
to yield speech recognition results close to those of the
optimal filter, which is data base dependent [7].

4. RECOGNITION EXPERIMENTS

We carried out speaker recognition experiments in both
clean and noisy conditions by filtering the average-
subtracted frequency sequence of log filter-bank energies
LFBE in several ways, and using the filtered sequence as
the speech representation, with no addition of
supplementary differential features. A speaker recognition
system based on continuous-density HMM was used.

The TIMIT [9] database was used in our experiments.
200 speakers (100 male and 100 female) were selected.
Clean speech was used for training in all the
experiments. Noisy speech for testing was simulated by
adding zero mean white Gaussian noise to the clean
signal so that the SNR of the resulting signal becomes
20 dB.

The HTK software, based on the Continuous-Density
Hidden Markov Models (CDHMM), was modified to
perform speaker recognition experiments with the novel
speech representation. In the parameterization stage, after
pre-emphasizing the signals with a zero at z=0.95,
Hamming windowed frames of 25 ms were taken every
10 ms. Each frame was represented by M=20 parameters,
derived from a bank of Q=20 mel-scaled filters. Each
speaker was characterized by a Markov model of one state
with 32 mixtures with diagonal covariance matrices. The
silence was also characterized by a Markov model, but
with 3 states and only one mixture. For each speaker, the
model was trained with 5 TIMIT sentences. The other 5
TIMIT sentences were used separately as test signals.

Table 1 shows the speaker identification rates (ID) in
clean and noisy conditions obtained with the
conventional mel-cepstrum  coefficients (MFCC)
representation along with the ones obtained with the
filtered log filter-bank energies (FLFBE) using several
high-pass first order FIR filters: 1-0.75z°!, which
equalizes the TIMIT database for M=Q=20, as it is used
in this work; and 1-0.8z1, 1-0.9z! and 1-z1, that are
inspired by the increasing tilt of the curve of the ratio
between inter-speaker and global cepstrum variances in
Figure 2.



Parameters / ID clean 20dB
MFCC 98.1 324
FLFBE (1-0.75z'1) 98.3 46.1
FLFBE (1-0.8z'1) 98.5 52.8
FLFBE (1-0.9z'1) 98.4 61.8
FLFBE (1-z’1) 98.3 64.4

Table 1. Speaker identification rates

It can be seen in Table 1 that the new FLFBE
parameterization is competitive with conventional mel-
cepstrum representation in clean conditions. When the
optimal equalizer for the TIMIT database 1-0.75z7! is
used, FLFBE outperforms conventional mel-cepstrum.
However, the best results are obtained with the filter
1-0.8z71, which slightly overemphasizes higher
quefrencies with respect to the equalized cepstrum.

The simple database-independent filter z-z', that yielded
results close to those of the optimum filter in clean
speech recognition [7], has not provided so good results
in speaker recognition, 97.8 % identification rate. It is
due to the band-pass characteristics of this filter.
Actually, a high-pass filter, like the ones considered in
the Table 1, is more convenient in order to properly
emphasize higher quefrencies.

Regarding to noisy conditions, excellent results have
been obtained by using the new FLFBE approach. Using
the optimum equalizer 1-0.75z!, there is an
identification error rate reduction of almost 30 % respect
to conventional mel-cepstrum. The results are even better
by using filters that put more emphasis on higher
quefrencies. Setting the zero at z=1, there is an
identification error rate reduction of almost 50 %. Filters
with zero close to 1 are more convenient in the presence
of broad-band noise due to the fact that cepstral
parameters of lower index are globally more affected by
this type of noise than higher order ones.

5. CONCLUSION
We have explored a new speech representation in speaker

recognition that consists in filtering the frequency
sequence of mel-scaled filter-bank energies with a simple

high-pass first-order FIR filter. For clean speech the
empirically optimum zero of the filter is very close to
the one resulting from flattening the cepstrum variance
by linear prediction. In this case, the set of parameters of
a given frame is the sequence obtained at the otput of the
optimum first-order prediction error filter driven by the
filter-bank energies sequence. For noisy speech, it is
preferable to use a zero closer to 1. Actually, the best
results in our experiments correspond to a zero of value 1
and offer almost 50 % error rate reduction with respect to
mel-cepstrum.
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