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ABSTRACT

In this paper, we report our recent work on applications of
the combined MLLR and MCE approach to estimating the
time-varying polynomial Gaussian mean functions in the
trended HMM. We call this integrated approach as the min-
imum classification error linear regression (MCELR), which
has been described in this study. The transformation ma-
trices associated with each polynomial coefficients are cal-
culated to minimize the recognition error of the adaptation
data and is developed using the gradient descent algorithm.
A speech recognizer based on these results is implemented
in speaker adaptation experiments using T146 corpora. Re-
sults show that the trended HMM always outperforms the
standard HMM and that adaptation of linear regression co-
efficients is always better when fewer than three adaptation
tokens are used.

1. INTRODUCTION

In the last couple of years, there has been much interest
in the area of feature-space transformation and model-space
transformation based adaptation to reduce the recognition
errors caused by acoustic mismatches between the training
and testing conditions [1], [3], [5], [9], [15]. Previous exper-
iments showed that the model-space approach results in a
significant improvement over the feature-space method [13].
In the current study, we will follow this model-space trans-
formation scheme [15], which adapts a set of speaker inde-
pendent models to a specific speaker by applying a set of
linear transformations to the Gaussian mean vectors. Each
transformation is used for a number of Gaussian distribu-
tions, and the number of transformations is determined the
amount of adaptation available. The parameters of trans-
formation matrices are estimated to maximize the likelihood
of the speaker specific data.

The formulation of the trended HMM (or trajectory-
based HMM or nonstationary-state HMM) has been suc-
cessfully used in automatic speech recognition applications
for the past few years [2], [4]. The model parameters of the
trended HMM (state-dependent time-varying means and
variances) used in the past were trained using Viterbi-like
algorithms based on the joint-state maximum likelihood
principle (ML). The method of ML, however, need not be

optimal in terms of minimizing classification error rate in

recognition tasks in which the observation is assumed to
be produced by one of the many source classes. Discrim-
ination can be improved if out-of-class information is also
used in training the models. Another alternative reestima-
tion criterion, called minimum classification error training
(MCE) has been developed for trended HMM to improve
the discriminating ability of ML criterion [11]. This train-
ing approach aims at directly minimizing the recognition
error rate of the training data by taking into account other
competing models and has recently been used in speaker
adaptation applications [6], [7], [8], [14].

In this paper, we extend the ML-based Viterbi algorithm
to the MCE training algorithm for optimally estimating the
linear transformations to the set of polynomial mean vec-
tors in the trended HMM. We shall call this integrated ap-
proach as the MCELR, which has been described in this
study. The transformations are set to be different for dif-
ferent trend parameters. Hence if we use quadratic trend
functions, then we must have three transformation matri-
ces, one for the intercept, one for the slope and the other for
the quadratic polynomial coefficients. The MCELR takes
some adaptation data from a new speaker and updates the
regression matrices to minimize the classification errors on
the adaptation data and is implemented using the gradient
descent algorithm. The regression matrices linearly trans-
form the trend mean parameters in order to map them to
the test speakers. The other HMM parameters are not
adapted since the main differences among speakers are as-
sumed to be captured by the means. Although gains can
be made by using state-dependent linear transforms [12],
we consider transformations on a global basis for the case
of small amount of adaptation data.

2. THE TRENDED HMM INCORPORATING
LINEAR REGRESSION MATRICES

The trended HMM is of a data-generative type and can be
described as

O = P OB-THR(D), ()

where O, t = 1,2,---,T is a modeled observation data
sequence of length 7', within the HMM state indexed by 1;
Bi(p) are state-dependent polynomial regression coeflicients



of order P indexed by state #; and the term R; is the sta-
tionary residual assumed to be independent and identically
distributed (IID) and zero-mean Gaussian source charac-
terized by state-dependent, but time-invariant covariance
matrix 2;. The term ¢ — 7; represents the sojourn time in
state 1 at time t, where 7; registers the time when state ¢
in the HMM is just entered before regression on time takes
place.

The MCELR approach to speaker adaptation accepts a
small of data from a new speaker and modifies the speaker
independent polynomial mean parameters to minimize the
classification error rate of the adaptation data. The remain-
ing model parameters are not updated since the previous
studies observed that the mean parameters are the most
effective in representing the essential characteristics of a
particular speaker [6], [10]. The adaptation of the mean
parameter is performed by applying a global transforma-
tion matrix to each of the state-dependent polynomial co-
efficients according to

Bi(p) = WI(p)Bi(p)
where W(p) is an d x d matrix, with d being the dimen-
sion associated with each polynomial coefficients which min-
imizes the recognition errors of the adaptation data. Each
state of the adapted model is characterized by a multivari-
ate Gaussian density function with diagonal covariance ma-
trices in the form of
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where B;i(p), X; denotes the polynomial coefficients for the
time-varying mean functions and the variances for the -th
state, respectively; (¢ — 74) is the sojourn time in state ¢ at
time ¢ and d is the dimensionality of vector . Superscripts
Tr,—1 and the symbol || denote the matrix transposition,
inversion, and determinant, respectively.

3. ESTIMATION OF LINEAR REGRESSION
MATRICES

In this section, the MCELR training process is briefly
described. One major purpose of this study is to de-
velop and implement the MCE-based discriminative train-
ing paradigm in the context of the trended HMM for
achieving optimal estimation of the global regression ma-
trices associated with each polynomial coefficients. Let &,
7=1,2,--- K, denote the parameter set characterizing the
trended HMM for the j-th class, where K is the total num-
ber of classes. The classifier based on these K class models
can be characterized by ® = {®;,P,,---,®c}. The pur-
pose of the MCE-based discriminative training is to find
the parameter set ® such that the number of misclassifying
all the adaptation tokens is minimized.

3.1. Definition of Loss Function

Let ¢;(O, ®) denote the log-likelihood associated with the
optimal state sequence © for the input token O, obtained
by applying the Viterbi algorithm using model ®; for the
j-th class. Then, for the utterance O (from class c), the
misclassification measure d.(O, ®) is determined by

dc(oa (I)) = _96(0’ (I)) + QX(O’ (I))’ (2)

where y denote the incorrect model with the highest log-
likelihood (i.e., the most confusible class). In this defini-
tion, a negative value of d.(O, ®) corresponds to a correct
The definition in Eqn. (2) focuses on the
comparison between the true model and the best wrong
model, an approximation which we adopt in this study for
computation efficiency. A more general form of the misclas-
sification measure using the log-likelihoods from all models
can be found in [12]. A loss function with respect to the in-
put token is finally defined in terms of the misclassification
measure given by

classification.

1
TO.9) = o 3)
which projects d.(O, @) into the interval [0,1]. Note that the
loss function T(O, ®) is directly related to the classification
error rate and 1is first-order differentiable with respect to
each global regression matrix parameters.

3.2. Minimization of Loss Function

Let ¢ be a parameter in the model ®. Provided that
T(O,®) is differentiable with respect to ¢, that parame-
ter is adjusted in the gradient decent method according to

- aY(0, ®)
¢ - ¢ — € a¢ ’ or
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In Eqn. (4), & is the new estimate of the parameter

and € is a small positive constant which monotonically de-
creases as the iteration number increases. This gradient
descent method is iteratively applied to all training tokens
in a sequential manner (for each global regression matrix
parameters) to minimize the loss function during the train-
ing process. Some intuitive explanations for Eqn. (4) are
given here.
T(O,®) = 0, In the case of a complete loss (very poor clas-
sification), T(O,®) ~ 1, the magnitude of ¢ in Eqn. (4)
would be close to zero and therefore the change of ¢ would
become very small. On the other hand, if T(O,®) ~ 0.5
(i.e., the likelihoods for the correct and the best wrong
model about the same, then the magnitude of ¢ would reach
a maximum. Therefore, the training procedure as described
in Eqn. (4) will focus on input tokens which are likely to
be misclassified but can be classified correctly after proper
adjustment of the model parameters.

In order to determine w in Eqn. (4), we note that
in the trended HMM, each state is characterized by a mul-
tivariate Gaussian density function as given in section 2.

In the case of near error-free classification,



Based on the trended model j, the optimal state sequence
©7 =67,8],.--,60] for an input token O = O1,0s,---,0r
(T frames in total) is obtained by means of modified Viterbi
algorithm [2]. Then, the log-likelihood is given by

T
> log by (Oclrys), (5)
t=1

8de(0,®) -
—%55— in

which will be used to compute the gradient
Eqn.(4) for global regression matrix parameters in the
trended HMM to be described in the remaining part of this
section.

3.3. Gradient Formula for Global Regression Ma-
trices

By applying the chain rule results in eqn. (4), the gradlent

calculation of i-th state parameter W; ;(r), r =0,1,---, P,
for the j-th model becomes
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where the adaptive step size is defined as

P if j=c (correct — class)

¥; = —¢ if j=x (wrong — class)
0 otherwise

and the set T;(j) includes all the time indices such that the
state index of the state sequence at time ¢ of belongs to
state 7th in the N-state Markov chain

Ti(5) = {te; =i},

To reduce the model complexity as well as to get robust
estimates from a small amount of adaptation data, we tied
all the state and model dependent transformation matrices
W; ;(r) to a global parameter W(r) in our experiments. For
this special case, the gradient is given by

S Z%Z D (=m)

=1 teT(J)

1<i<N, 1<t<T.
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The other model parameters are not adopted since the main
differences between speakers are assumed to be purely rep-
resented by the mean parameters.

4. SPEAKER ADAPTATION EXPERIMENTS

The experiments conducted to evaluate the MCELR ap-
proach are aimed at recognizing the 26 letters in the English
alphabet, contained in the T146 speaker dependent isolated
word corpus. It is produced by 16 speakers, eight males
and eight females. The speaker-independent (SI) training
set consists of 26 tokens per word from each of six male and
six female speakers. For the remaining four speakers ({1,
f2, m1 and m2), up to ten tokens of each word are used as
adaptation training data, and the remaining 16 tokens used
as speaker dependent test data.

The preprocessor produces a vector of 26 elements con-
sisting of 13 Mel-frequency cepstral coefficients (MFCCs)
and 13 delta MFCCs for every 10 msec of speech. The
delta MFCCs are constructed by taking the difference be-
tween two frame forward and two frame backward of the
MFCCs. This window length of 50ms is found to be opti-
mal in capturing the slope of the spectral envelope, i.e. the
transitional information [12]. The augmented MFCCs and
delta MFCCs are provided as the data input for every frame
of speech into the modeling stage. Each word is represented
by a single left-to-right, three-state HMM (no skips) with
mixture Gaussian state observation densities. The covari-
ance matrices in all the states of all the models are diagonal
and are not tied. All transition probabilities are uniformly
set to 0.5 (all transitions from a state are considered equally
likely) and are not learned during the training process.

The speaker-dependent (ML) models are trained from
adaptation data using five-iterations of the modified Viterbi
algorithm with single mixture for each state in the HMMs
[2]. To set up a baseline speaker-independent (SI) perfor-
mance on the test data set, we created the ML models,
which had been well trained using the SI training set, with
a single mixture distribution for each state in the HMMs
[10]. For the MCELR approach, the global transformation
matrix is initialized by the d x d identity matrix. Since
good initialization of transformation matrices is important
to avoid local optimum that would necessarily occur due
to the use of gradient descent. Note that the above initial-
ization gives rise to the trended HMM model parameters
without adapting the time-varying means. We perform a
total of five ML, and MCELR iterations and only the best-
incorrect-class i1s used in the misclassification measure. Al-
phabet classification is performed directly from the modified
Viterbi score calculation [2].

The average recognition rates (averaged over two males
and two females) are summarized in Table 1 for three ex-
perimental setups: 1) benchmark speaker-independent (SI)
experiments; 2) speaker-dependent (ML) experiments; 3)
speaker-adaptation experiments adapting only polynomial
coeflicients for the time-varying means (MCELR). These
results demonstrate effectiveness of the MCELR training
on the trended HMM. Compared with speaker-independent
models; the MCELR adaptive training procedure achieves



Number of Polynomial Order
Adaptation P=0, S1=69.95% P=1, S1=75.48%
Tokens ML MCELR | ML MCELR
1 58.35% | 76.44% 46.82% | 79.44%
2 71.15% | 78.13% 74.58% | 82.69%
3 77.7% 80.29% 82.52% | 84.74%

Table 1. Summary of speaker adaptation results.

consistently better performance even with a single token
in the adaptation data. The results clearly show that the
regular training procedure (ML) is not as good as SI rate
when the amount of available training data is limited to one
adatation token per word. In the MCELR experiments, the
best error rate reduction of 22.58% is obtained when moving
from P =0 (80.29%) model to P =1 (84.74%) model with
three adaptation takens. The rate drops gradually with
fewer adaptation tokens for MCELR experiments. In con-
trast, for ML experiments, the rate drops rapidly when the
training tokens reduce from three to one. The best recogni-
tion rate of 84.74% is achieved when polynomial coefficients
are adapted using all three tokens of adaptation data.

5. CONCLUSIONS

In this study, the global linear regression based speaker
adaptation technique using MOCE-based discriminative
training paradigm (MCELR) is developed, implemented
and evaluated for optimally estimating the time-varying
polynomial Gaussian mean functions in the trended HMM.
Compared with speaker-independent models, the MCELR
adaptive training procedure achieves consistently better
performance even with a single token in the adaptation
data. An error rate reduction of 61% is achieved when
moving from ML to MCELR adaptation scheme in case of
linear trended models using a single token in the adapta-
tion data. When three training tokens are used to obtain
adaptive estimates for the polynomial coefficients, the rec-
ognizer achieves the best recognition rate of 84.74% (av-
eraged over four speakers). We conclude that the time-
varying mean parameters in the trended HMM represent
the essential characteristics of a particular speaker and can
be better estimated with MCELR training approach even
with limited amount of training data by using the discrim-
inatively derived global regression matrices. A much more
details on experiments with higher order trend polynomial
function using MCELR approach is under way and will be
reported soon.
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