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ABSTRACT

This paper investigates the effects of using multiple
time intervals for the calculation of regression coeffi-
cients. The technique that we have used is referred
to as Wavelet-Like regression (WLR). Using this ap-
proach we have found that the underlying time series in
the cepstral domain differs slightly depending upon the
index of the series, and that by employing a technique
that accounts for this, such as WLR, we may achieve an
incremental improvement in recognition performance,
at negligble extra costs.

1. INTRODUCTION

Temporal derivatives, when used in addition to existing
static features have been found to give performance im-
provements for speaker recognition [1], [2], [3] and [4].
Similar results have also been reported for speech recog-
nition [5], [6] and [7]. In speech recognition the dynam-
ics are thought to be theoretically important in terms
of compensating for spectral undershoot [8] and tempo-
ral spectral masking [9], whilst in speaker recognition
the role of dynamic information is less well understood.

The derivatives can be directly calculated by differenc-
ing, or they may be approximated by a regression fit.
The regression approach is reported as having a slight
performance advantage [2], [5], and this is the approach
that has been adopted here.

The interval over which the derivatives are taken is usu-
ally identical for each component of the derivative, al-
though experiments that calculate the same derivative
twice, using two different window lengths have been
tried for speech recognition [6].

Speaker recognition work has suggested windows of be-
tween 90ms and 150ms for the first derivative [1],[2],[4],
about 250ms for the second derivative [4] and 350ms for
the third derivative [4]. It has also been reported that
the use of the zeroth regression coefficient yields no per-
formance improvement over the existing static features
[4]. Turning to speech recognition, similar results have
also been reported for the same derivatives [5], [10] [6].

In both speaker and speech recognition, some of the

same pieces of work have also shown that very long
window lengths, e.g. over 150ms for the first regression
coefficient, give a slightly better performance than the
normally used intervals, but these durations are typi-
cally rejected on practical grounds in favour of shorter
effective windows [1], [2], [5], [10]. One notable case in
particular, is Hanson and Applebaum, who have pub-
lished extensively in this area [7], [12], [5], [10]. In [5],
they find that optimum performance is achieved us-
ing 210ms for the first derivative, and over 300ms and
400ms for the second and third derivatives respectively.
They do not use these optima, because they are longer
than average syllable durations, and they assert that
averaging over such a long time interval will not work
so well on a more confusable vocabulary.

In [4], it is shown that the optimum dynamic interval
is largely, but not completly, independent of the initial
feature order. The observation that the optimum does
exhibit a small dependency upon the number of com-
ponents in the static vector, with generally low order
vectors having slightly longer optima than the higher
orders, forms the motivation for this work.

1.1. End-Effects

An implementation problem associated with the use of
a moving window process on small amounts of data, is
what to do at the ends. With short utterances, such as
isolated words, the stage can be quickly reached where
the number of dynamic vectors is significantly less than
that of the original vectors; which can potentially result
in useful information not being adequately represented.
Padding methods that can be used to compensate for
this include: zero [7], noise [7] and cyclic [11]; we have
examined some of these in our initial experiments.

1.2. Wavelet-Like Regression

Regression fitting as a means of representing the dy-
namic information in the speech signal was first pro-
posed for by Furui [1] for speaker recognition. The first-
order regression coefficient is most commonly used, an
equation for which is shown in Eqn. 1; the others may
be found in [12].
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where N is the window length, C} is the kth cepstral
component and AT is the sampling period.

It has been suggested that the reason for the small per-
formance advantage of regression, when compared to
simple differencing, is due to its ability to cope better
with the inherently noisy nature of the derivatives [2].
In the case of the first order derivative shown in Eqn.
1, it can be seen that it does this by constructing a
weighted average about the window’ss central location
(X = 0). From this it is obvious that the selection
of the optimum window length(s) N for the regression
calculation R, is a balance between averaging out dis-
tortion, whilst still retaining resolution at a scale com-
mensurate with the acoustic events under study.

In previous implementations of dynamic features, win-
dow lengths used have been constant for each compo-
nent k of the regression vector. This assumes that each
of the time series formed from the static vectors, have
identical dynamic characteristics, and are equally ef-
fected by any noise present in the input signal. Our
Wayvelet-Like Regression uses the same regression equa-
tions, but abandons the above assumptions by using
different window lengths for each componenent in the
following way:

1. set the first and last regression window lengths to
the desired values - when they are equal we have
standard regression analysis.

2. linearly interpolate the intervals between these
two extremes for each intervening coefficient.

3. quantise the values derived from 2) to the nearest
(0odd) window length.

The resultant feature we call a Wavelet-Like Regression
(WLR) feature, in order to distinguish it from conven-
tional regression features.

2. EXPERIMENTAL DETAILS

The database used in these experiments is the BT Mil-
lar, isolated-word speaker verification, digit database,
down sampled to 8kHz and quantised to 16 bits. Each
one of the digits is repeated 25 times across 5 sessions
by each of the speakers.

Unless otherwise stated the following conditions pre-
vail:

e 20 speaker all-male subset, using the first 3 ver-
sions for training and the last 15 for testing.

e static features, 14** order mel cepstra (MC) calcu-
lated using 24 mel filters with a Hamming window

of 32ms and a window overlap of 50%, discarding
Co.

e speaker models, text-dependent codebooks of size
16, derived using the binary-split, LBG algorithm.

o closed-set classification according to accumulated
minimum distance criteria.

Benchmark results for inverse variance weighted MC
(MCI) using the above conditions give an error rate of
11.37%.

2.1. End-Effects Experiments

Two possible ways for dealing with the end effects as-
sociated with dynamic features have been investigated,
namely zero and cyclic (noise padding was not used,
since it has already been shown to be inferior to zero
padding [7]). The different schemes were compared
with no padding, using the first order derivative de-
rived from MC.
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Figure 1: The effects of different padding schemes on
recognition using R;

The results shown in Fig 1, show that essentially our
three options exhibit the same trends. With only zero
padding showing a consistent performance advantage
compared to the other two techniques. Both of the
other approaches suggest windowing intervals that are
shorter than that for zero padding. This indicates
that zero padding deals with end-effects better than
the other two approaches. Bearing these two points in
mind we have adopted zero padding as our standard for
the remaining regression experiments.

One unexpected observation from this experiment, is
how well the zero padded first-order regression coeffi-
cients work. Error rates for windows between 144ms
and 272ms are similar to those of the benchmark static
features, even though the regression features were not
inverse variance weighted. All of the previous work in
speaker recognition has not shown this to be the case
and most reported speech recognition results. By a
process of elimination we suspect this difference is due



to our use of zero padding and text dependent test-
ing (previous work has either been text dependent un-
padded [1], text independent unpadded [2], or text in-
dependent cyclic regression [4]. Interestingly, one of the
papers that does show the first derivative with approx-
imately equivalent performance to the static features,
is a paper on speaker independent word recognition [5].
In that paper performance for the first derivatives is
shown as being good between about 90ms and 250ms
in normal conditions, with an optimum in good agree-
ment with ours at 210ms.

2.2. Initial Wavelet-Like Regression
Experiments

In these experiments we wanted to determine if using
WLR is a sensible idea. In order to do this we have
used W LR, features which have been derived from MC
using zero padding.! The results of which, along with
the performance of the optimal R; features are shown
in Table 1.

Input MC
Processing R | WLR,
Opt. Ci 208 272
Win. (ms) Cis 208 112
[Error (%) | 1353 | 10.07 |

Table 1: An initial comparison of the performance of
W LR; and conventional regression

The results in Table 1 shows that using WLR; gives
a small performance advantage. However, because the
use of WLR effects the variances of the each time se-
ries to differing degrees. Because of this, it is likely
that at least some of the improvement in the recogni-
tion performance, is due to empirically optimising the
contribution of each component of the WLR to the dis-
tortion measure. In order to avoid this problem in the
future, all the remaining experiments use inverse vari-
ance weighting.

2.3. Wavelet-Like Regression in the
Cepstral Domain

In this set of experiments we determine the optimum
calculation intervals for WLR;, WLRy and WLR;,
these are compared with MCI and the optimum con-
ventional regression coefficients. The standard results
are shown in Table 2, whilst Table 3 shows the optimum
results for WLR and Fig. 2 shows a typical example of
an error contour map for WLR, in this case for WLR;.

From Tables 2 and 3, we can see that the use of WLR
gives a small performance advantage when compared
to standard regression features.

IThe use of MCI will give different results to those for
MC

| Feature

Opt.
Win. (ms) | NA | 208 | 336 | 432

[Error (%) | 11.37 | 12.27 | 15.70 | 18.03 |

| MCI [ Rt | R: | Rs ]

Table 2: Results for MCI and the conventional regres-
sion coefficients

| Feature | WLR: | WLR; | WLR; |
Opt.
Win. Ch 336 336 528
(ms) Cre | 80 208 304

[Error (%) | 10.83 | 15.20 | 17.00 |

Table 3: Results for optimum WLR coefficients

Given the nature of the performance enhancement, it is
important that the result is not data dependent. Figure
2 shows a contour map of the errors for W LR, verus
the different window intervals for the time series C; and
C14, and helps us to see that generally lower errors oc-
cur to the right of the line depicting R results. This re-
gion corresponds to generally better performance being
achieved by using longer windows for the lower order
regression components, and shorter ones for the higher
parts. This generality implies that the use of WLR in
order to enhance recogniton rates should not be very
data dependent.

We have further tested the degree of data dependency
of these results, by carrying out a cross validation test
using the optimum regression intervals shown in Table
2 for Ry and Table 4 for WLR,;. The conditions for this
test set are identical to those previously used, except
that the speakers used are 15 females, rather than the
original 20 males. These give the results in Table 4.

| Feature | MC | Ri | WLR; |
| Error % | 10.62 | 10.36 | 10.13 |

Table 4: W LR, cross validation, window lengths as
in table 3

The cross-validation results above confirm our conclu-
sion that the advantage obtained by using WLR;, al-
though small is real and that the same conclusion is
likely to be true for the other WLR coefficients. We
may also conclude that the dynamic characteristics of
the initial static cepstral representation are not iden-
tical, and thus the interval over which the regression
is calculated should be different depending upon the
index of that component. The decreasing regression
window length, for each successive cepstral time series,
is also in agreement with what would be expected from
previous work in [4].
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Figure 2: Contour map of the error rates for WLR;,
using a range of values for C; and C4

3. COMMENTS AND
CONCLUSIONS

The following two points may be drawn from this piece
of work:

1. care must be taken in the optimisation of any mov-
ing window feature extraction technique, in or-
der that the end-effects, accentuated by limited
amounts of training data, are adequately dealt
with. We have found that the best approach for
dealing with this is zero padding, in agreement
with [5].

2. the dynamic characteristics are not identical for
each component of the cepstral vector. When a
technique that accounts for this is used, such as
WLR, then a small increase in performance is gen-
erally likely to be obtained. In particular we have
found that the windows applied to the higher order
cepstral coefficients should be shorter than those
applied to to the lower, which is in agreement with
what would be expected from previous published
work in [4].

4. REFERENCES

1. S. Furui. Cepstral analysis techniques for automatic
speaker verification. IEEE Trans. ASSP-29, 29:254-
272, 1981.

2. F. K. Soong and A. E. Rosenberg. On the use of instan-
taneous and transitional spectral information in speaker
recognition. In Proc. ICASSP-86, Tokgo, volume 2,
pages 877-880, April 1986.

3. L. Xu and J. S. Mason. Instantaneous and transitional
perceptually-based features in speaker identification. In
Proc. Eurospeech-89, pages 271-274, Paris, September
1989.

10.

11.

12.

. J. 8. Mason and X. Zhang. Velocity and acceleration

features in speaker recognition. In Proc. ICASSP-91,
Toronto, Canada, volume 5, pages 3673-3677, 1991.

T. Applebaum and B. Hanson. Robust speaker-
independent word recognition using spectral smoothing
and temporal derivative features. In Proc. EUSIPCO-
90, 1990.

S. Furui. On the use of hierarchal spectral dynamics
in speech recognition. In Proc. ICASSP-90, pages 789-
792, 1990.

B. A. Hanson and T. H. Applebaum. Robust speaker-
independent word recognition using static, dynamic and
acceleration features: experiments with lombard and
noisy speech. In Proc. ICASSP-90, pages 857-860, 1990.

S. Furui. Speaker independent isolated word recogni-
tion based on emphasized spectral dynamics. In Proc.
ICASSP-86, pages 37.10.1 — 37.10.4, 1986.

B. Strope and A. Alwan. A model of dynamic auditory
perception and its application to robust speech recogni-
tion. In Proc. ICASSP-96, pages 37-40, 1996.

T. Applebaum and B. Hanson. Speaker independent
recognition of noisy and Lombard speech. In Proc.
120th meeting of the Acoustical Society of America, San
Diego, California, November 1990.

X. Zhang, J. S. Mason, and E. C. Andrews. Multiple
dynamic features to enhance neural net based speaker
verification. In Proc. Eurospeech-91, volume 2, pages
1411-1414, 1991.

T. H. Applebaum and B. A. Hanson. Tradeoffs in the
design of regression features for word recognition. In
Proc. Eurospeech-91, volume 3, pages 1203-1206, 1991.



