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ABSTRACT

The performance of speaker recognition algorithms drops

signi�cantly when testing and training acoustic environ-
ments di�er. This decrease is caused by the statistical

mismatch between the statistics representing the speaker

and the testing acoustic data. This paper reports our
preliminary results on the application of a novel en-

vironmental compensation algorithm to the problem of

speaker recognition and identi�cation. This new tech-
nique, called the Delta Vector Taylor Series (DVTS) ap-

proach, improves performance at signal-to-noise ratios be-

low 20dB. The algorithm imposes a model of how the envi-
ronment modi�es speaker statistics and uses Expectation-

Maximization (EM) to solve a joint maximum likelihood

formulation for the speaker recognition problem over both
the speakers and the environment. We report experi-

mental results on a subset of the TIMIT and NTIMIT

database.

1. Introduction

As speaker recognition technology is deployed in richer

environments robustness to the e�ects of the environment

becomes increasingly important. In many situations the

statistical di�erences between the training corpus used

to create speaker models and the testing utterances used

to verify/identify speakers can be quite dramatic. It is

therefore important to develop algorithms able to cope

with this statistical mismatch.

Over the past serveral years there has been considerable

work on speech recognition robustness. In speaker recog-
nition there has been work on robust model training, and

in robust scoring techniques [4], but relatively little work

on remapping of the speech statistics to reect changes in
the channel or overall background noise.

Zhang and Mammone [10] describe one approach for en-

vironmental compensation. In their technique, the e�ect

of the channel and noise on the cepstra is modeled us-

ing an a�ne transform. The transformation is similar to

the MLLR transformation used by Leggetter and Wood-

land [7] for robust speech recognition. In their approach,

Zhang and Mammone derive analytically the appropri-

ate a�ne transform for additive, Gaussian, white noise

and a linear channel distortion. In their experiments,

the desired a�ne transformation is then determined from

the known channel and noise conditions and applied to

a Vector Codebook model of each speaker. The speaker
which had the minimum accumulated distance between

their transformed codebook and the measured speech is
then selected as the identi�ed speaker.

This paper presents a di�erent approach to the problem
of environmental robustness in speaker reognition. Rather

than using an a�ne transformation for modelling the ef-

fect of the environment on speech statistics (a codebook)
we use an analytical model of how additive noise and con-

volutional noise a�ect speech statistics. We will show how
the vector codebook approach can be made into a blind

matching approach by: 1) using a non-linear model for

the e�ect of the environment on features computed using
a FFT, and 2) using the EM algorithm to do speaker de-

pendent maximization of the environmental parameters.

Gish's ML [4] statistic is then computed from the trans-
formed codebook and used for identifying the speaker.

However, any �nal speaker scoring algorithm could be

used including Bimbot's AHS metric [2] or a speaker mix-
ture model [9]. The technique improves performance even

though it broadens each speakers model by independently

adaptating them to the target speech.

2. Background

The DVTS technique is based on an extension of the Vec-
tor Taylor Series (VTS) [8] approach to robust speech

recognition. This technique models the e�ect of the en-

vironment on speech feature vectors by introducing an
environment function z = x + f(x;n;q), where z repre-

sents the measured noisy speech feature vector, x repre-

sents a clean speech feature vector, f is the environmental
function, and (n;q) represent the environmental parame-

ters. In our case, we assume a simple model of the envi-

ronment as additive, Gaussian, noise and linear �ltering.
This model was original proposed by Acero [1] and later

used by Gales [3] and others.

Given the statistics of the speaker p(xjs), based on clean

speech vectors, the above equation can be used to com-
pute the statistics of the speaker under distorted condi-

tions p(zjs). However, if p(xjs) is modeled as a Gaussian

mixture, there is no known analytical technique for com-
puting p(zjs).

The VTS approach solved this problem by approximating

f(x;n;q) by a vector Taylor series about the mean of

each mixture component. The linearization of f makes



the computation of p(zjs) a simple, mixture component
dependent linear transformation. However, the accuracy

of VTS is constrained by the magnitude of the covariance
of the mixtures. The covariance controls the size of the

second order e�ects in the Taylor series, and the larger

the covariance the less accurate the transformation.

DVTS takes the VTS idea to its logical extension by mod-

eling the statistics p(xjs) for a speaker s by the training
speech available from that speaker, or via a large vector-

codebook trained on the speaker's speech. The under-
lying speech statistics can be thought of as a collection

of weighted Dirac deltas, p(xjs) =
PK

k=1
P[k; s] �(x �

v(k; s)). The delta codebook represents an idealization
of the speaker's speech that is useful in simplifying the

math.

The process of measuring the speech will always broaden

the delta's distribution transforming the measured speech
distribution p(z) into a mixture of Gaussians. In fact it

can be shown, under standard models for speech, that the

process of measuring the spectrum of the speech using a
�xed window and FFT has a minimum covariance that

depends only upon the mel-smoothing and is independent

of the window size or the frequency content of the signal.

Thus, conceptually our approach is to model the source
speech as a collection of very narrow distributions (the

Dirac deltas) the covariance of which can be neglected

in the environmental transformation, but the e�ect of
the environmental/measurement transformation will be

to smooth the source distribution producing a Gaussian

mixture model with a single covariance shared across all
mixture components.

This is probably not a good model for speech recogni-

tion or for speaker modeling, because there the problem

is smoothing the sample statistics to obtain a good ap-
proximation to p(xjs). However it is an excellent model

for environmental estimation, because in this case we are

only trying to �nd a few overall environmental parameters
and the sampling process will smooth the e�ects of the

delta modeling. The simplicity of the model reduces the

mathematical manipulations required for implementation
and opens up the possibility for a richer environmental

model, i.e., environmental models di�erent from the ad-

ditive noise and linear �ltering by an unknown channel.

3. Algorithm

In our system the mel-frequency spectral coe�cients
(MFSC) are computed using a 410 point Hamming win-

dow and a 512 point FFT. The resulting power spectra

are reduced to 41 mel-frequency power terms, then the
log is taken to get the MFSC components. Based on this

signal processing, f takes the form

z = log(exp(x+ q) + exp(n)) (1)

where x and z are the MFSC vectors, q is the MFSC

channel, n is the power of the noise in the MFSC domain.
The functions are applied component-wise.

Performing a �rst order Taylor expansion of equation 1

about each training vector, or codebook vector, v(k; s)

E[zjk;s] = v(k; s) + f(v(k;s);n;q) (2)

�[zjk;s] = B
T�nB (3)

B = diag(1=(b(k; s) + 1)) (4)

for the expected value and covariance of z about each

vector, and b(k;s) = exp(q+v(k; s)�E[n]) is the e�ective

signal-to-noise ratio at a training vector 1. The covariance
of the measurement about a given vector depends upon

the local signal-to-noise ratio, however, we will assume

that this covariance is constant. The environment, given
a speaker, is then represented by � = (q;n;�z).

The log-likelihood of an ensemble of N measurements

Z = fz1; : : : ; zNg given a putative speaker s, is de�ned as

l(Zjs; �) =
P

N

t=1
log(p(ztjs; �). The EM algorithm max-

imizes this by iteratively solving an auxiliar function Q

de�ned as

Q(�; �0

js) =

NX

t=1

KX

k=1

P [kjzt; �; s] log(p(zt; kj�
0

; s)) (5)

where � represents our current estimates of the environ-
mental parameters and �0 represents the new values we

are searching.

Our algorithm has three basic steps, 1) transformation of

the speaker dependent codebook vectors by f , 2) use of the
transformed vectors to compute accumulators (E step),

3) use of the acumulators to update � (M step). After

EM has converged, our algorithm maps the last trans-
formed vectors fv(k; s)g into the representation used for

the speaker recognizer. The likelihood that an utterance

was generated by a particular speaker can then be mea-
sured with the AHS distance [2] or the maximum likeli-

hood distance introduced by Gish [4]. Another possibility

is to use the likelihood computed by the EM algorithm as
the distance measure between an utterance and a speaker.

In this case after EM converges no further computations

are required.

To summarize, the whole process of speaker recognition
follows these steps:

1. Training: by computing and storing the mel-

frequency spectral (MFSC) vectors for a speaker's

training utterance.

2. Estimation of environmental parameters: for each

speaker and each utterance load the speaker's train-

ing features and run the DVTS algorithm against the
utterance's MFSC features until the EM algorithm

converges.

3. DVTS compensation of codebook: use the environ-
mental parameters computed using the EM algo-

rithm to map the speaker's training speech (this is

actually done by the EM algorithm at each step) to

the target environment.

4. Reestimation of speaker model: compute su�cient

statistics for speaker recognition from the mapped

features and use those to compute the likelihood that

the utterance was produced by the speaker.

1Notice also that B is equal to r
v(k;s)f(v(k; s);n;q)



5. Speaker recognition/identi�cation: select the most
speaker with the highest likelihood as the utterance

speaker.

4. Experiments

Our experiments were conducted on the TIMIT [6] and
NTIMIT databases [5]. The TIMIT database is a carefully

recorded clean database of 630 speakers. The NTIMIT

database was constructed by passing the TIMIT database
in a loop over telephone channels in the New York and

New England area. Ten utterances were recorded from

each speaker. The �rst 7 utterances were used for building
a model of the speaker and the remaining 3 utterances

were used for identi�cation experiments. We used the �rst

50 female speakers from the database in our experiments.
In general the female speakers are more confuseable than

the male speakers.

Figure 1 shows �ve di�erent test conditions for this algo-

rithm. The accuracy of each algorithm is plotted against
the signal-to-noise ratio (SNR) for white, Gaussian, noise

that was arti�cially added to the test utterances. The

sampling error in all the curves is approximately �0:05 in
accuracy. All curves were generated using the Gish ML

distance metric.

The top solid curve is for matched speaker identi�cation

(SID) performance. For this curve the training speech
was measured at the given SNR. This is the highest per-

formance that can be achieved with a given scoring algo-

rithm, but is not practical for a real situation because the
SNR is unknown and varying in a real application.

The bottom solid line is the performance when no com-

pensation is applied and the models are trained on clean

speech. The �gure shows that noise levels above 30dB
cause a rapid decrease in performance. Since typical of-

�ce environments are 20-25dB this drop limits deployed

speaker identi�cation performance.

The next three lines show the performance of the DVTS
algorithm applied with three di�erent levels of prior in-

formation. The dash-dot line directly below the matched

curve is the performance of the DVTS when the SNR is
known. This shows that for SNR's 20dB and higher the

DVTS algorithm achieves matched performance. At lev-

els below 20dB the DVTS approximation diverges from
matched performance. The approximation may be im-

proved by removing the assumption of �xed covariance

for each transformed vector at the cost of increased com-
putation.

The dotted line just above the no compensation approach

is the DVTS performance when a simple histogram based

heuristic is used to estimate the environmental parame-

ters. This heuristic is the starting point for the EM al-

gorithm. The results for the EM algorithm is given by

the dashed line abouve the heuristic line. This result

shows that optimizing the environment over each speaker

using EM causes a drop in performance from the prior

level. This is due to the additional width that is e�ec-

tively introduced into each speaker's distribution by the

environmental estimation. However the improvement in

Train Test Metric Perform.

NTIMIT NTIMIT ML 47/150

TIMIT NTIMIT ML 18/150

TIMIT NTIMIT DVTS-EM 37/150

Table 1: Performance of DVTS with the EM algorithm

in cross training conditions between TIMIT and NTIMIT.

performance over no compensation, shows that there is
su�cent additional information in the measured features

to estimate both the speaker and the environment. A

more constrained speaker model may shrink the distance
between the known DVTS level and the EM level.

A second matched and unmatched performance exper-

iment was performed using the TIMIT and NTIMIT

databases. In all cases 16 kHz speech data was used.
Table 1 shows that the DVTS algorithm substantially

improves performance in this real cross condition test.

There is substantial miss-match in this experiment. The
NTIMIT data has no speech data about 4 kHz and has

substantial noise levels, whereas the TIMIT data has

speech up to 8 kHz and has an SNR of 40 or higher.

5. Conclusions

This paper described our preliminary results in applying
a new model-based approach to environmental compensa-

tion for speaker recognition. The DVTS approach can be

used with many di�erent speaker scoring algorithms be-
cause it works directly on the training speech to estimate

training speech that is matched to the environment using

EM. The paper showed that this approach can improve
performance at SNR's less than 20dB where the ML dis-

tance metric is used as the �nal scoring algorithm. The

paper also showed that the algorithm is able to decrease
the substantial miss-match between TIMIT and NTIMIT.

In order to improve performance with this algorithm,

more constrained speaker models may be necessary. This

would lower the amount of variation induced by the en-
vironment compensation and may close the gap between

the known environment case and the EM estimated case.
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Figure 1: Performance of the DVTS algorithm on a subset of the TIMIT database as a function of the noise level.
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