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ABSTRACT

Speaker recognition experiments have been conducted
with the publicly available YOHO database to compare
the performance of human listeners and computers. Two
types of listening experiments have been performed, one
is the forced-choice speaker discrimination test which is
corresponding to the task of speaker identification. The
second experiment of speaker recognition by human
listeners is the same-different judgment which is similar
to the task of speaker verification. It is shown that the
human listeners perform well for the same-different
judgment task, but the error rate of speaker discrimina-
tion is relatively large. Besides, human listeners are more
robust to session variability, while the machine's per-
formance falls off largely when the reference and test
utterances are from different recording sessions.

1 INTRODUCTION

Recent years automatic speaker recognition becomes an
active research area. The driving force of this increasing
interest is due to that there are many promising applica-
tions. Rosenberg demonstrated that in some instances
speaker recognition by machines can outperform human
listeners. This is especially true for short test sentences
and unfamiliar sounds [1]. Until now we still have very
little knowledge about how a human listener distin-
guishes speakers and what cues he use. Such kind of
knowledge would be surely helpful for designing a more
robust and powerful automatic speaker recognition sys-
tem.

The present study reports several comparison experi-
ments with the publicly available YOHO database. Two
human listening experiments have been conduced, one is
a forced-choice speaker discrimination test and the other
is a same-different judgment test. Corresponding to the
two listening tests, two types of speaker recognition
experiments: speaker identification and verification, have
been performed using the same speech data. Two prob-
abilistic speaker models have been evaluated. In the first
model, the distribution density of feature vectors is mod-
eled with a standard multivariate Gaussian function with
full covariance matrix, while the second speaker model is
the Gaussian mixture model (GMM).

2 SPEECH DATABASE

The speech material were selected from the YOHO data-
base which was collected at ITT to support text-
dependent speaker authentication research [2]. There are
106 male and 32 female speakers. Each speaker has four
enrollment sessions where in each sessions he/she is
prompted to read a series of 24 combination-lock
phrases. Each phrase is a sequence of three two-digit
numbers (e.g., 35-72-41, pronounced as thirty-five sev-
enty-two forty-one). There are 10 verification trials per
speaker consisting of four phrases per trial. The vocabu-
lary consists of 56 two-digit numbers ranging from 21 to
97. The speech was collected in an office environment
using a telephone handset connected to a workstation.
Thus, the data has slightly wider bandwidth (3.8 kHz)
than the telephone line bandwidth, but no telephone
transmission degradation. Besides, all sessions took
place over the same handset. To save experiment time,
only a subset of the database consisting of 20 male and
20 female speakers was used. For the human listening
experiments, the signals were played back directly with-
out any further processing. In the automatic recognition,
16 MFCC coefficients were calculated from each voiced
segment of speech signals to compose a feature vector.
The analysis window size was 32 ms with 16 ms over-

lapping.

3 SPEAKER RECOGNITION BY
HUMAN

3.1 Procedure

Two experiments of speaker recognition by human lis-
teners were performed. The first experiment is a forced-
choice speaker discrimination test. This experiment cor-
responds to the close-set speaker identification by com-
puters. During the test, a sequence of test blocks was
played back through earphones. Each test block consists
of 5 tokens (a token refers to one digit string). The first
token is the reference token, followed by four test tokens
corresponding to the four alternative choices labeled as
A, B, C and D. The four alternatives were spoken by four
different talkers, one of them being spoken by the
speaker of the reference token. The subjects were asked
to identify which of the four alternative utterances was
spoken by the same speaker of the reference token. The



experiment was performed under two different condi-
tions. In the first case, the reference token and the corre-
sponding test token came from the same recording ses-
sion, while in the second case they were selected from
different recording sessions.

The second listening experiment is the same-different
judgment test. A pair of tokens was played back each
time, the listeners had to judge whether these two tokens
were spoken by the same speaker or not. The listeners
were also requested to indicate on a three-point scale his
confidence in the correctness of his response. Like the
first experiment, the two test conditions: the same re-
cording session and different recording sessions, were
studied.

3.2 Results

In general, the performance of speaker recognition by
human improves with the test going on. In the speaker
discrimination experiment, the correct response rate was
62% for the first test session and then gradually in-
creased to 85% after the completion of the 4™ session.
Even thought the performance is relatively lower when
the reference and test utterances are from different re-
cording sessions, the degradation is not so dramatic as in
many automatic speaker recognition applications. In
other words, human listeners are relatively robust to
session variability. No significant difference was found
between male and female voices. It is noticed that the
human's temporary memory plays an important role in
this type of experiments. The subjects must memorize the
properties of the reference token in order to compare it to
each of the alternatives. The percentage of correct re-
sponses by the listener declines as the reference and the
correct alternative are separated by an increasing number
of incorrect alternatives. The impression of the reference
sound becomes more blurred as the time span between
the reference and test token increases. The recognition
rate is at highest when the token next to the reference is
happen to be the correct one.

Recording session same different

discrimination rate 77 % 71%

judgment error rate 8% 12%

Table 1 Speaker recognition performance by human
listeners.

In the same-different judgment test, the initial error rate
was about 20%, but with the test going on, the error rate
decreases to less than 8%. Similar to the discrimination
experiment, the error rate is higher if the reference and
test utterances are from different recording sessions.
Table 1 gives the average performances of the listening
experiments. The first row gives the correct identification

rate obtained from the speaker discrimination experi-
ment, while the second row is the error rate of the same-
different test. We summarize the results shown in Table
1 as follows. First, the discrimination rate declines (or
the judgment error rate increases) when the reference and
test utterances are from different recording sessions, but
the performance degradation is not so dramatic as will be
shown in the speaker recognition by machine, suggesting
that the human listeners are more robust to session vari-
ability. Second, the human listeners can distinguish two
speakers very well (the same-different test), but it is
clearly difficult for human to hold several different
voices in head in order to compare them, therefore, the
error rate of speaker discrimination is higher than that of
the same-different judgment. On the other hand, the
automatic system has no such problem, it can store a lot
more data and compare them with each other.

4 SPEAKER RECOGNITON BY
MACHINE

4.1 Speaker Models

We evaluated two parametric probabilistic speaker mod-
els. The first model is the multivariate Gaussian function
given by

- 1 = Tl =
p(x)zmexp{—(x—u) X ()c u)/Z}

The Gaussian model has been studied extensively in the
statistical literature and is widely used for speaker recog-
nition [3]. The advantage of using the Gaussian model is
that the parameters (# and X) can be calculated directly
from the training data.
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the average log-likelihood, £(X )Z%Z‘ilog(p(if)), is

used as the measurement of similarity. However, from a
series of preliminary experiments, we found that using
the Bhattacharyya distance [4] always leads to a better
performance. This measurement is defined as
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where # and Y are the mean vector and covariance
matrix of the Gaussian model, while #x and X x are the
mean vector and covariance matrix of the test vector



sequence. It is easy to show that if the test vector se-
quence match the model perfectly, then B(X )=0. A

larger value of B(X) means that the vector sequence is

less possible from this model. B(X) was used as the

measurement of similarity in our experiments with the
Gaussian model.

Recently, the Gaussian mixture model (GMM) becomes
very popular and is shown to be able to give a very high
speaker recognition performance [5]. The GMM is a
weighted sum of several Gaussian functions
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The parameters of the GMM can not be calculated di-
rectly from the training data but can be estimated with
the EM algorithm. In practice, due to high computational
load and limited available training data, the diagonal
covariance matrices are exclusively used in all Gaussian
functions. The GMM has stronger modeling capability
than the unimodal Gaussian function, but usually needs
more training data. Obviously, the feature vectors from
one digit string is not enough to reliably estimate the
parameters of the GMM, therefore, we conducted normal
speaker identification and verification experiments with
the GMM.

In the identification experiment, the population size is
the same 40 speakers used in the listening experiments,
but each model was trained with all data of four enroll-
ment sessions. During the test, an individual string was
used as a test utterance, that is, there were 40 test utter-
ances from each speaker and 1600 test utterances in total.
In the verification experiment, some additional 20 speak-
ers (10 male and 10 female) were selected as the impos-
tors. The likelihood ratio was used as the score, in each
evaluation, there were 1600 scores from the customers
and 32000 scores from the impostors. The background
speakers were those not claimed but having the same
gender as the claimed speaker. In other words, there were
19 background speakers for each model. The background
score is the joint probability density of the utterances as
described in [5].

4.2 Identification Experiment

With the Gaussian model, the automatic speaker identifi-
cation experiment was performed under the same para-
digms as the speaker discrimination test. From each test
block (5 tokens), five Gaussian models were created, that
is, the mean vector and covariance matrix of each Gaus-
sian model were estimated from only one token. Each of
the last four models was compared with the first one, the
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test model that had the smallest Bhattacharyya distance
to the reference (the first model) was identified as spoken
by the same speaker of the reference. The speaker identi-
fication rate with the Gaussian model is shown in Table
2. Comparing with the speaker discrimination test, we
see that the machine outperforms the human listeners.
This is especially true in the case of the same recording
session, but the machine's performance falls off largely
when the reference and test utterances are from the dif-
ferent recording sessions. Besides, it is seen that the
automatic system has more difficulty to recognize female
voices. This conclusion is consistent with that obtained
by other researchers [5].

same recording  different recording

session sessions
male 95.6 % 85.6 %
female 94.0 % 78.8 %

Table 2 Speaker identification performance using
the Gaussian model under the same evaluation con-
ditions as the forced-choice listening test.

The speaker identification rate vs. the number of mix-
tures by the GMM is plotted in Figure 1. As expected,
the performance improves with the number of mixtures.
Again, the identification rate for the male speakers is
higher than that for the female speakers. Due to different
evaluation conditions, it is not easy to compare these
results with the performance of human listeners, but it is
quite possible that for the task of identifying a speaker
from a large population, the automatic system can do
better than humans.
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Figure 1 Speaker identification performance using
the GMM.

4.3 Verification Experiment

To simulate the scheme of the same-different judgment
test, two Gaussian models were generated from each test
pair. The Bhattacharyya distance between these two



models was calculated as the matching score. Figure 2
shows the false rejection rate and false acceptance rate as
a function of the decision threshold 0. In this case, the

dimension of feature vectors in this experiment was 16
which is smaller than that used in Reynolds' experiments.

equal error rate (EER) is about 21% at 6=0.54.
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Figure 2 The False rejection rate and the false ac-
ceptance rate as a function of the decision threshold

0.

To gain insight into the problem, we reorganized the
scores according to the recording sessions and the gender
of speakers. Table 3 gives the EER in different situa-
tions. From this table, we see that, like speaker identifi-
cation, the verification accuracy is lower when the refer-
ence and test utterances are from different recording
sessions. There is still difference between male and fe-
male voices, but it is not consistent. Comparing with the
same-different test, it is seen that, in general, human
listeners perform better than machines for this type of
tasks. This is especially true for the different recording
sessions.

same recording  different recording
session sessions
male 9.5 % 25.0%
female 12.0% 20.0%

Table 3 The equal error rate (ERR) with the Gaus-
sian model under the same evaluation conditions as
the same-different listening test.

The verification performances using the GMM are shown
in Table 4. In addition to the EER, this table also gives
the false rejection rates at a false acceptance rate of
0.1%. Comparing with the results reported in [5], the
error rates shown in Table 4 are much higher. The main
reason is that in this experiment an individual string was
used as a test utterance, while in Reynolds' paper, he
concatenated four digit strings into a long one and used it
as a single test utterance. It is known that the error rate
decreases with the length of test utterances. Besides, the

Mixtures 4 8 16 32 64
EER (%) 102 78 64 52 47
FR (%)

@FA=0.1%

62.8 503 420 33.6 339

Table 4 Error rate of speaker verification using the
GMM. The equal error rate (EER) and the false re-
jection (FR) rate at the false acceptance (FA) rate
of 0.1%.

5 CONCLUSION

Several experiments have been conducted to compare the
performance of speaker recognition by human listeners
and by computers. It has been shown that for the task of
same-different judgment, which is similar to speaker
verification, human listeners can do better than comput-
ers. Besides, human listeners are more robust than ma-
chines to session variability. For the task of speaker
discrimination, which corresponds to speaker identifica-
tion, due to memory limitation of humans and the inter-
ference between different test utterances, computers can
outperform the human listeners, especially when the
reference is followed by too many alternative choices.
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