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ABSTRACT

This paper reports on the development of a foreign
speaker accent classification system based on
phoneme class specific accent discrimination models.
This new approach to the problem of automatic
accent classification allows fast and reliable
prediction of the speaker accents for continuous
speech through exploitation of the accent specific
information at the phoneme level. The system was
trained and evaluated on a corpus representing three
speaker groups with native Australian English (AuE),
Lebanese Arabic (LA) and South Vietnamese (SV)
accents. The speaker accent classification rates
achieved by our system come close to the benchmarks
set by human listeners.

1. INTRODUCTION

A number of recent studies have shown that the
performance of speaker-independent speech recognition
systems can be improved by modelling of the speaker
variability due to regional dialects and foreign speaker
accents (eg. Beattie et. al. [2], Brousseau and Fox [4], Van
Compernolle et. al. [8], Arslan and Hansen [1]). Various
front-end systems for the automatic identification of
speaker accents and dialects have been proposed.
Blackburn et. al. [3] used a cascade of Multi-layer
Perceptrons for the speech segmentation and subsequent
foreign speaker accent classification. Zissman et. al. [9]
discriminated dialects of Latin American Spanish by
combining phoneme recognition with dialect-dependent
language modelling. Other approaches derived decisions
based on the likelihood scores produced by accent-
dependent HMM phoneme recognizers (Kumpf and King
[5], Arslan and Hansen [1]).

The accent classification system presented in this paper
extends our recently developed technique (Kumpf [6]) for
accent classification using Linear Discriminant Analysis
(LDA) on individual phoneme classes to continuous
speech utterances of variable length. Accent likelihood
scores are generated for each phoneme segment in the ut-
terance and accumulated to produce accent discrimination
scores for the utterance.

Operation on the phoneme level was motivated by our
interest in the capability of each phoneme class to

contribute to the speaker accent discrimination task. The
results of our previous experiments have shown that the
segments of all phoneme types contain accent specific
information which can be exploited by training phoneme
class-dependent accent discrimination models [6]. We
also found that each extracted feature’s contribution to the
speaker accent separation depends on the phoneme
segment class. An individual feature set optimisation for
each phoneme class produces the best performing and
most robust accent discrimination model set.

Our speaker accent classification system was designed to
be flexible and portable to process other accented
databases. Therefore it was not feasible to rely on manual
data segmentation. An HMM phoneme segmenter was
used to automatically segment the accented speech.

The algorithm and architecture of the speaker accent
classification system are described in Section 2. Section 3
introduces the speech corpus used in the experiments.
Section 4 outlines a study on the human perception of
foreign speaker accents which is used here to provide
performance benchmarks. Section 5 presents the
experimental accent classification results.

2. CLASSIFICATION METHOD

The speaker accent classification for continuous speech
utterances is based on the accumulation of accent
likelihood scores produced by phoneme class-dependent
accent discrimination models [6]. A single feature vector
is extracted from each phoneme segment in the training
and test utterances which combines (i) acoustic (12
MFCC coefficients and log energy), (ii) prosodic
(phoneme segment duration, in Section 5.2. FO and delta-
FO are added) and (iii) contextual information (categorical
features describing the phonetic left and right context of
the segment). The coding of the categorical features with
contrasts expands the feature space to 65 dimensions.
Silence segments and non-speech sounds are ignored.

The feature vectors of each phoneme class are pooled
across the training database and used to estimate
phoneme-dependent LDA models (sets of linear
discriminant functions that provide maximal separation of
the accent classes). An optimised feature sub-set is
selected for the training of each LDA model to maximise
the accent discrimination performance. The optimisation



scheme eliminates features with very low variance and
highly correlated features. The remaining features are
ranked according to their accent discrimination capability
for the individual phoneme classes. The algorithm drops
features one by one from the training set based on their
significance in the regression of the linear discriminant
functions onto the feature set.

During testing the likelihood score of accent A, for the
feature vector x,, of each phoneme segment n is given by

P(Ac‘xn)= p(x, ‘Ac)nc/p(xn) , A_e{AuE, LA, SV}

The probability densities p(x, ‘ A ) are inversely propor-
tional to the exponential of the Mahalanobis distance
between the feature vector and the accent class means in
the discriminant variable space. The a priori accent class
probabilities 7, are assumed to be equal for all accented
speaker groups.

The accent discrimination scores S, for continuous speech
utterances of variable length are derived through
accumulation of the phoneme-dependent accent likeli-
hood scores over N phoneme segments in the utterance:

N

se= TTP(ax,)
n=1
S. is equivalent to the summation of the distances of the
feature vectors to the accent class means in the LDA
space. The speaker accent decision is derived by choosing
the accent class with the smallest accumulated distance:
N
A= argmax H P (Ac‘xn)

C n=1

For statistically independent feature vectors S, is equal to
the accent likelihood scores for the utterance and the
above equation represents the maximum-likelihood
criterion. Due to its simplicity and efficiency, we adopted
the same model even though the feature vectors extracted
from the phoneme sequence contain explicit contextual
information (and are therefore not independent).

Our approach differs from that pursued by Miller and
Trischitta [7], who applied LDA to the discrimination of
four American English dialects. In their system the
features extracted from a selection of between 5 and 17
phoneme classes (mostly vowels) are averaged over 75 to
400 utterances per speaker and combined into a single
feature vector. Our approach is more flexible as it allows
us to (i) model the phoneme-dependent accent
information, (ii) train phoneme class-dependent LDA
models which reduces the high dimensional feature space
and increases the numerical stability and accuracy of the
LDA, (iii) process and score utterances progressively.

3. DATABASE

The speech corpus used in this study is part of the
Australian National Database of Spoken Language
(ANDOSL) and comprises read speech utterances from

72 male speakers of the three accented speaker groups
AuE, LA and SV containing 22, 26 and 24 speakers,
respectively. All speakers were at least 17 years old and
the migrants had spent at least 4 years in Australia. Each
speaker produced either 50 or 200 sentences, which
resulted in a total of 6450 utterances with an average
utterance length of 4.4 seconds. The utterances were
segmented using the 44 phoneme classes of the target
language Australian English. Manually segmented data
was available for 22 speakers. Automatic segmentation
was performed using an HMM phoneme aligner trained
on a separate set of AuE speakers alignment and the
orthographic transcription of the speech utterances.

4. HUMAN PERCEPTION

This section briefly outlines a human perception study
which was conducted on 20 native AuE subjects in order
to establish evaluation benchmarks for the automatic
accent classification task. Each listener classified the
speaker accent type and judged the relative accent
strength of a randomly selected set of 144 speech
segments of up to six seconds duration from all 72
speakers in the database. Statistical analysis was used to
assess the influence of (i) the speaker language
background, (ii) the segment duration, (iii) the duration of
the experiment on the subjects’ perception of speaker
accent type and strength. Post-experimental interviews
were evaluated to identify clues used by the listeners to
distinguish the accents. The subjects confidently,
consistently and correctly identified the AuE accents and
mainly confused LA speakers with either AuE or SV
speakers, depending on the relative accent strength.

5. EXPERIMENTAL RESULTS

The amount of training data was varied during the
development of the foreign speaker accent classification
system, while all tests were carried out on 4750
automatically segmented utterances from 15 AuE, 20 LA
and 15 SV speakers.

5.1. Basic Accent Classification System

This section analyses the effects of speech segmentation
quality and the amount of training on the performance of
the speaker accent classification system (Table 1).

% correct utterance classifiation
Speakers AuB LA SV | Average
22 manual 91.5 64.5 | 77.6 77.9
49 automatic 89.3 714 | 739 78.2
62 automatic 91.7 69.8 | 83.9 81.8

Table 1: Speaker-independent accent classification for
varied traning database segmentation and size

The first accent classification system was trained on 1700
manually labelled utterances from 22 speakers. As aresult
of the feature set optimisation for maximum accent



discrimination on the phoneme level, on average 40
features were selected for the training of each phoneme-
dependent LDA model. The accent classification rate on
the utterances of the training set was 99.4%, averaged
over all speaker groups. In the speaker-independent test
on the utterances of the 50 test speakers the classifier
achieved an average accent classification rate of 77.9%
(first row of Table 1). The accent classification rate on the
single phoneme segments of the same test set was only
49.4%. This underlines the benefit of accumulating the
phoneme-dependent accent discrimination scores. In
agreement with previous experiments and the judgements
by the human listeners the performance is worst for the
LA speakers, as they are confused both with AuE and SV
speakers.

A second experiment investigated how the reduced
quality of the automatic segmentation (substitution and
insertion errors as well as the shifting of phoneme
boundaries) affects the quality of the accent
discrimination models. The accent classification system
was trained and tested on automatically aligned speech
data from 50 speakers. The feature sets for the phoneme-
specific LDA models were the same as before (optimised
on manually labelled data). A leaving-one-out training
procedure was employed to allow speaker-independent
testing, using one speaker at a time for testing and the
other 49 for training. The average accent classification
rate across all speaker groups was 78.2% (row two of
Table 1). This performance is very similar to that achieved
by the classifier trained on the manually segmented data,
however, the number of speakers and the amount of data
used for training had more than doubled. These results
show that the lower quality of the automatic segmentation
can be compensated by increasing the speaker variety in
each accented speaker group and the overall size of the
training database.

In order to maximise the generalisation of the phoneme
dependent accent discrimination models, the number of
speakers for the system training was further increased to
63. Again leaving-one-out training was used and on the 50
speaker test set the accents were classified correctly for
81.8% of the utterances (row three of Table 1), which
represents a relative error reduction of 16.5%, compared
to the previous system. Our best performing HMM based
accent classifier, which combined accent dependent
phoneme recognizers with statistical language models [5],
had been trained under the same conditions and achieved
an average classification rate of 79.2% on the same test
set. In addition to the higher performance the LDA based
system has the advantage of greatly reduced system com-
plexity. Both systems require similar efforts for speech
segmentation and feature extraction but (i) the estimation
of linear discriminant functions is computationally less
expensive than iterative Baum-Welch re-estimation of the
HMM models, (i) the HMM based system requires
separate processing of the test utterances through each
accent-dependent phoneme recognizer.

5.2. Pitch modelling

The human perception tests indicated that the listeners
based their accent classification decisions on acoustic
features of individual speech sounds, the intelligibility of
single words and utterance content as well as prosodic
features such as pitch movements, rhythm and pausing.
Since the rhythmic patterns of some speakers’ heavily
accented speech are more associated with poor reading
skills than with the accent itself, we chose not to model
rhythm explicitly, but included only pitch data. The
feature sets were augmented with level and slope of the
pitch contour, extracted from a 26 ms window around the
segment centres. The feature set optimisation algorithm
ranked the FO level as a prominent feature for the accent
discrimination on most vowel and voiced consonant
classes, while the influence of delta-FO was negligible.
The inclusion of FO resulted in modest increases of the
accent classification rates on single phoneme segments,
but lead only to slight performance improvements on the
utterance level. A possible explanation is that the model
contains insufficient context to model the more significant
pitch variation correlates of accent.

5.3. Utterance duration

Figure 1 shows the performance of the final speaker
accent classification system of Section 5.2. (including the
FO feature) as a function of utterance duration.
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Figure 1: Accent classification rates vs. utterance duration



The duration represents the accumulated length of the
phoneme segments processed by the classifier. For some
of the migrant speakers the true utterance durations were
up to 20% longer due to extensive pausing caused by their
problems with the reading of the target language. Up to
ten spoken sentences from the same speaker (containing
about 425 phoneme segments) were concatenated to
simulate the system performance on continuous speech
utterances of up to about 40 seconds duration. The tick-
marks on the classification curves correspond to 5, 10, 15,
20, 25, 30 and 35 phoneme segments, followed by 1, 2, 4,
6, 8 and 10 concatenated utterances. Due to higher
speaking rates the AuE speakers’ utterances are shorter in
duration, however they contain roughly the same number
of phoneme segments. Figure 1 also shows the overall
accent classification rate achieved by the human listeners
for speech utterances of up to 6 seconds duration.

The average speaker accent classification rate of the
automatic system increases rapidly with the accumulation
of the phoneme segment accent likelihood scores to
84.7% at 8.1 seconds and reaches 88.1% for the longest
durations. The human listeners exploited the accent
specific information more efficiently than the automatic
classifier and reached an accent classification rate of
87.4% for speech segments of only 6 seconds duration.

5.4. Feature set reduction

Finally, we analysed the influence of the feature set size
on the accent classification performance by stepwise
reducing the feature set size for the training of the accent
discrimination models and thus trading off computational
effort against classification accuracy. The tick-marks
correspond to 100%, 95% and 90% of the maximum
accent classification rate on single phoneme segments.
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Figure 2: Accent classification rate versus feature set size

for utterances (4.4 seconds average duration).
Figure 2 shows that an average reduction of the feature set
size from 40 to 9 features results in a 20% increase of the
accent classification error (relative) on whole utterances.
This underlines the effectiveness of the feature selection
algorithm, as most of the relevant information for the
speaker accent discrimination is concentrated in the
features with the highest ranking.

6. CONCLUSION

We have presented an approach to the complex task of
automatic foreign speaker accent classification that

successfully exploits the accent specific information
extracted from phoneme segments. The new system is
more transparent and requires less computational effort
than our previous HMM based classifier, combined with
an increased capability to discriminate speaker accents.
We demonstrated that the classification performance
depends on the quality and amount of the training data as
well as optimal feature selection. The performance of
human listeners on the comparable task is superior to our
system, however our human perception study indicates
that the listeners have the advantage of combining the
processing of low-level features with their morphological
and syntactic knowledge of the langua
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