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ABSTRACT

In this paper, we present a novel architecture for a
Speaker Recognition system over the telephone. The
proposed system introduces acoustic information into a
HMM-based recognizer. This is achieved by using a
phonetic classifier during the training phase. Three
broad phonetic classes: voiced frames, unvoiced frames
and transitions, are defined. We design speaker
templates by the parallel connection of the outputs of the
single state HMM's and by the combination of the
single state HMM’s into a four state HMM after
estimation of the transition probabilities. The results
show that this architecture performs better than others
without phonetic classification.

1. INTRODUCTION

Continuous HMM (Hidden Markov Model) based
systems are presently the state of art for speaker
recognition purposes. It is well known [1] that their
performance relies on the total number of Gaussian
mixtures of the model and not so much on how many
states are used. Thus, one single-state multiple-Gaussian
mixtures model called GMM is one of the preferred
algorithms for this task [2]. After training it is supposed
that the Gaussian components have learned the more
relevant aspects regarding the distinctive phonetic
features that characterize a person voice. The higher the
number of Gaussian mixtures, the better. The important
point is then to decide how many mixtures must be used
to achieve a good compromise between representation
accurateness and the amount of data required for
training. Computational complexity must be kept as low
as possible as well.

As the vocal tract exhibits widely articulatory
configurations during the production of distinct sounds,
an average sct of features does not represents a
speaker's voice characteristics accurately. To include
acoustic discrimination helps to improve performance.
The point is to select the best sound classes and how to
perform a robust automatic speech classification.

In this paper, we investigate the role played by several
phonetic characteristics regarding speaker recognition
using HMM based systems. Namely, voiced part,
unvoiced part and transitions are considered.
Eventually, we propose an ergodic HMM model that
combines these phonetic classes. In this way, we force
the learning capability of the model and reduce the
required number of Gaussian when compared with a
complexity equivalent system that makes no use of a
priori phonetic information.

The rest of the paper is organized as follows: Section 2
presents the database we used. In Section 3 we present
the architectures of the models and in Section 4 the
results obtained with these models. Finally, section 5
presents some conclusions and guidelines for future
work.

2. EXPERIMENTAL CONDITIONS

The experiments were conducted using our own
database called “TelVoice”. It has been designed for
Speaker Recognition purposes and its goal is to have at
least 50 Spanish speakers with 10 sessions each,
recorded over a period of one month an a half. Thus,
time interval between sessions may vary from one
speaker to another, but it is never less than three days. It
consists of telephone speech sampled at 8 Khz.

In order to asses the performance of the proposed
system, we have set up an experiment making some
choices about recording conditions and speech
parameterization. Mel-cepstrum and A-mel-cepstrum
coefficients were computed using a frame length of
20ms, and a frame period of 10 ms. Energy and the first
derivative of energy were appended to the parameters of
each frame. The performance was evaluated for a
speaker identification application using 12 mel-cepstral
coefficients using an order for the cepstral coefficients
of 14. The number of Gaussian mixtures varies from 1
to 32. We use covariance-tied models across all the
experiments. We have done some tests using cepstral
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mean subtraction and preemphasis with a factor of 0.95
as well.

The recording work of TelVoice is still in progress, so
in this experiment we use a subset of the database that
contains 5 sessions uttered by 20 Spanish speakers (10
males and 10 females). The material we use from each
session consists of 4 repetitions of the Spanish Identity
Card number, made up of 8 digits (approximately 5
seconds each). The speakers were addressed to
pronounce it naturally (digit by digit, grouping digits, or
as a whole, as they usually do). The utterances recorded
in one session were used for training and the other four
were used for testing. The session used for training was
rotated.

3. SYSTEM ARCHITECTURE
3.1. Acoustic segmentation

The phonetic classifier identifies the type of speech
frame. In this implementation, we use a phonetic
classifier that we have previously developed for speech
coding purposes. It considers three distinct sound
classes:

¢ Voiced sounds which have quasi-periodic waveforms
and fairly harmonic spectra.

¢ Unvoiced frames which have aperiodic waveforms
and irregular spectra; their energy is usually lower
than that of voiced sounds.

¢ Transitions defined as the two first voiced frames
after an unvoiced segment and the two last voiced
frames before an unvoiced segment. This type of
frames 1is characterized by a non stationary
waveform.

One important point is that we also use a Voice Activity
Detector (VAD) to identify the noise segments. The
phonetic classifier uses an algorithm close to the one in
[3] with some modifications to improve its behavior in
noisy environments and to work in an Multiband
Excitation Speech Coder [4].

The labeling of the training utterances is performed in a
completely automatic way by this phonetic classifier.
We train three HMMs per speaker with the frames
corresponding to each phonetic class. All the non-voice
material of the training session is used to train a noise
HMM that is the same for all speakers.

3.2, The parallel system

When testing, we use a grammar for each speaker
instead of using the phonetic classifier, as it can be seen
in Fig. 2. This grammar allows any transition among

the four HMMs (three for the voice and one for the
noise) with equal probabilities, and the output
probabilities are computed using the Viterbi algorithm
for each type of voice segment. This means that the
phonetic segmentation is embedded in the testing
procedure. We accumulate all the output probabilities
for the three possible phonetic classes. This way, it is
possible to combine these output probabilities and to
build up different decision rules.

In the experiments described in this section, we use two

different configurations for the weighting factors:

¢ Equal factors. That is, we consider that importance
across phonetic classes is the same.

Voiced Unvoiced

Transitions Noise

Fig. 1: The Parallel System

¢ Selecting factors. One factor is set to 1 and the other
two are zero. This latter choice is very useful to
study the relative importance of a particular phonetic
class allowing also that different numbers of
Gaussian mixtures in different states can be used.
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Fig. 2: The Ergodic Model

3.3. The Ergodic model

After doing some experiments with the Parallel System,
we designed an Ergodic Model like the one shown in
Fig. 2. As a starting point in the construction of this
model, we take the four previous HMMs trained with
the different acoustic segments. We combine these
models into an ergodic one (all the transitions between
states are allowed) and retrain this model with the
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Fig. 4: Embedded segmentation in Parallel System (1 mixture per model)

restriction that only the transition probabilities can be
modified.

With the purpose of studying the influence of the
training of the transition probabilities in the final
performance of the Ergodic Model, we also tested the
same architecture with a totally free retraining. That
means that, after building the Ergodic Model, we allow
all the parameters of the model (transition probabilities,
means and variances) to vary.
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Fig. 3: Speaker Identification Rate - Parallel System

4. EXPERIMENTAL RESULTS
4.1. The parallel system

Fig. 3 shows the correct identification rate of our system
using a cepstral calculation of 12. The solid line
corresponds to the unsegmented voice (one HMM for
the speech and another for the noise combined by a
grammar) and the dashed lines to the segmented voice
cases with equal factors and selecting factors. This
figure shows that the relevant information regarding the
identity of the speaker is mainly in the voiced part of the
speech, particularly true when the number of Gaussian
mixtures is low.

Fig. 4 presents the result of the embedded segmentation
for a utterance during the testing phase with 1 Gaussian
mixture per model. In this graphic, the height of the
dashed line means the output of the phonetic
segmentation: the maximum height corresponds to the
voiced segments, the minimum to the unvoiced ones and
the intermediate to the transitions; the chunks without
dashed line are classified as noise. One important
conclusion than can be derived from this figure is that
the segmentation is quite correct with a number as low
as one Gaussian mixture per model, in spite of the fact
that the identification rate strongly depends on the
number of mixtures.
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Fig. 5 : Speaker Identification Rate - Ergodic Model

4.2 The ergodic model

The resulting system experiments a dramatic
improvement in the identification rate, as it can be seen
in fig. 5. In this figure, the top line corresponds to the
new model and the rest of the lines correspond to the
Parallel System and to the system without Acoustic
Segmentation.
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Fig. 7: Ergodic Model with Cepstral Mean Substraction
and Pre-emphasis (k=0.95)

With the purpose of studying the influence of the
training of the transition probabilities in the final
performance of the Ergodic Model, we also tested the
same architecture with a totally free retraining. That
means that, after building the Ergodic Model, we allow
all parameters of the model (transition probabilities,
means and variances) to vary. The recognition rate
obtained experiments a decrease between 15 and 30%,
as it can be seen in fig. 6.

In fig. 7 the Identification Rate of the Ergodic Model
applying cepstral mean substraction (CMS), pre-
emphasis (k=0.95) and both is shown. In this case there
is no rotation of the sessions and only the first session is
used for training. It can be observed that the CMS
improves the performance of the system, and that an
additional preemphasis makes the results a little worse.
Is important to have in mind that although the
maximum difference in fig. 7 is about 4%, that means a
reduction in the identification error about 40%.

5. CONCLUSIONS

The main conclusion that can be extracted from the
Parallel System is that the voiced part of the speech

plays a major role in the speaker identification task,
although the identification score is far below
requirements. The way of improving the recognition
rate of this system would be to calculate weighting
factors to be applied to the output probabilities of each
of the models. Instead of this, we build up an Ergodic
Model in which the transition probabilities are in charge
of the weighting factors among classes. An advantage of
this approach resides in its automatic procedure, along
with its great flexibility.

In [1] it is stated that for HMM based systems,
identification scores are highly correlated with the total
number of mixtures independently of the number of
states. Our results show that the performance of the
Ergodic Model is very high even with a number of
mixtures per state as low as one, an it maintains
approximately constant independently of the number of
mixtures. The explanation for this behavior can be
derived from fig. 4: with one mixture per state the
representation of the general characteristics of the
phonetic classes is accurate enough. When we increase
the number of mixtures, we are improving the
representation of the boundaries between these phonetic
classes and the overall effect is that the recognition rate
increases. When we build an Ergodic Model and retrain
the transition probabilities, we are introducing this
information in the model in a different and much more
efficient way. The high recognition rate of this
architecture, along with its low computational load,
encourages us to think that it can be a suitable choice
for a real-world application as a speaker verification
system over the telephone line.
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