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ABSTRACT

This paper evaluates 63 Automatic Gender
Identification (AGI) systems for text-independent clean
speech segments, coded speech and speech segments
affected by reverberation. The AGI systems contain a
Linear Classifier (LC) with inputs from a combination
of two average pitch detection methods and paired
Gaussian Mixture Models trained with mel-cepstral,
autocorrelation, reflection and log area ratios
parameterised speech data. An AGI system is built
which is able to handle the LPC10, CELP and GSM
coders with no significant loss in accuracy and reduce
the impact of even severe reverberation by subjecting
the training data of the LC with a different room
response. Using speech segments with an average
duration of 890ms (after silence removal), the best AGI
system had an accuracy of 98.5% averaged over all
clean and adverse conditions.

1. INTRODUCTION

In Automatic Gender Identification (AGI), a
computerised system is used to identify an individual’s
gender by analysis of his/her speech signal. The need
for AGI arises in several situations, some of which are:
1) sorting telephone calls by gender (e.g. for gender
sensitive surveys), 2) as part of an automatic speech
recognition system to enhance speaker adaptation, and
3) as part of Automatic Speaker Recognition (ASR)
systems. With regards to the latter application, some
ASR systems discriminate speakers from one gender
only [10]. This entails that unknown speakers be
discriminated on the basis of gender before further
discrimination can proceed. AGI may also be useful as
an additional step to reduce cross gender errors present
in other ASR systems such as that by Reynolds [1]. In
the past, AGI has been investigated for clean speech by
Wu and Childers [14]. Recently Parris and Carey [2]
studied AGI for different languages using telephone
speech data.

This paper investigates AGI under degraded conditions
using text-independent speech data from the TIMIT
database [6]. The conditions examined are reverberation
and speech coding. The effect of these adverse
conditions have been investigated recently for ASR [7]
(reverberation) [11] (coding). The following speech
parameter types are investigated for their suitability to

AGI under adverse conditions: Autocorrelation,
Reflection, Mel-Cepstral, Log Area Ratio Coefficients
[5], and two estimates of the average pitch. The
suitability to AGI of the Gaussian Mixture Model
(GMM) Classifiers (this classifier has been extensively
used in ASR) and fused systems comprising of GMMs
and/or average pitch are also tested.

2. PROPOSED AGI SYSTEMS
2.1 AGI System

To construct our proposed AGI systems we use the
concept of fusion of knowledge sources as used in ASR
[8] and in AGI by Parris and Carey [2]. In their AGI
system, Parris and Carey use a linear classifier to fuse
information provided by acoustic analysis with pitch
information. The systems presented in our paper are
similar in that they use linear classifiers to fuse various
knowledge sources. In our work the Linear Classifiers
(LCs) are implemented using the simple perceptron
learning rule [8]. The knowledge sources investigated
are two methods of average pitch estimation and paired
GMMs (PGMMs) each trained and tested with a
different speech parameterisation scheme. To calculate
the Average Estimated Pitch (AEP)[12] the speech
signal is first divided into N overlapping frames. A
frame is taken as voiced and the pitch value is
determined if there is a detected peak (within a certain
interval in which a reasonable pitch is expected) in the
cepstrum greater than a designated threshold. To
improve the accuracy, the threshold is not determined as
fixed for different frames but is determined on the basis
of the sum of cepstrum coefficients in a search interval.
The AEP is the average pitch over all the frames
identified as voiced. In an attempt to improve the
accuracy of average pitch calculation we use a second
method [13], which focuses on pitch calculation at
predominantly steady points in the speech signal (points
in voiced speech which are far from voiced/unvoiced
boundaries). The Average Estimated Pitch at Steady
Points AEPSP is the average of all the pitch values
calculated using this second method. An example AGI
system comprising of P PGMMs and AEP is shown in
Figure 1. The parameterisation types used are described
in Section 4 and PGMMs later in this section.
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Figure 1. AGI system comprising P PGMMs and AEP
2.2 Gaussian Mixture Models for AGI

The distribution of parameterised feature vectors, for a
particular speaker, can be modelled using a GM density
given by [1]:

M
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where M is the number of mixtures and b; (x) are uni-

modal Gaussian densities, each characterised by mean
vector W and covariance matrix Y, ;> pjare

corresponding mixture weights. In our AGI system
paired GMMs (PGMMs) are used for each speech
parameter type. For each pair, one GMM (g = female) is
trained with parameterised data from a general
population of female speakers and the other from a
general population of male speakers (g = male). Given
T parameterised feature vectors for speech segment X,
the following expression is computed for each GMM in
a pair:

T
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A score I'(X) = Stmaie - Smate 15 then taken as the output
of the PGMM.
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Figure 2. PGMM component of AGI system.
3. ADVERSE CONDITIONS
In the era of rapidly expanding mobile

telecommunication services AGI systems may receive
input from mobile terminals. These systems may use

coded speech. The proposed AGI systems are evaluated
with coded speech. Several standard coders are used.
These are: LPC10 [5], GSM [3] and CELP [4] coders
which have bit rates of 2.4, 4.8 and 13 Kbits/s. The AGI
systems are also investigated for speech affected by
reverberation, an obstacle often encountered in forensic
applications as well as in secure database access with
hands free telephones. For this study we make use of
Allen and Berkley’s image method [9] to simulate
rectangular room responses in the time domain. An
acoustically reverberated speech signal r(n) can be
expressed mathematically as the convolution of a clean
speech signal s(n) with an enclosure (room) impulse
response A(n): r(n) = s(n) = h(n). where h(n) is
characterised by room dimensions (X,y,,7;), speaker
location (X,,ys,Zs), microphone location (X.,yum,Zm) as
well as a wall reflection coefficient for each wall f3;
where &, k €[1..6])

4. SPEECH DATA COLLECTION AND PRE-
PROCESSING

For each gender, 177 speakers are selected from the
TIMIT database [6]. This database provides clean
wideband speech data sampled at 16 kHz for speakers
from various dialectic regions in the United States of
America. For each of the selected speakers the three
text-independent speech segments provided by TIMIT
are used. The 177 speakers are divided up into training,
test and validation sets (each speaker appeared in only
one of these sets). To increase the amount of test and
validation segments all speech segments in these sets
are split into two equal segments. All speech segments
are decimated to 8kHz as the speech coders used have
been designed for processing speech sampled at 8kHz.
Silent parts and low energy segments were removed
since they are poor indicators of speaker identity. The
details of the speech set allocation are as summarised in
Table 1. The speech parameterisation schemes used to
reduce the speech signal for the PGMMs included: Mel-
based cepstral coefficients (Mel-cep), Reflection
coefficients (Ref.), Autocorrelation coefficients (Auto.)
and Log Area Ratios (LAR). For these parameterisation
schemes an analysis filter of order 15 is used and speech
segments are divided into overlapping 32ms speech
frames with 22ms overlap between adjacent frames.

5. EXPERIMENTS

In the following experiments, clean speech and speech
affected by 7 adverse conditions are evaluated for a
variety of AGI schemes. For all experiments, PGMMs
are trained using training data, LCs are trained using
validation data, and quoted test results are obtained by
testing the AGI systems with the test set. AGI systems
used are constructed using all possible combinations of



Table 1: Speech set allocation
Training |Test Validation
male |[fem [male |fem [male [fem

Speakers 33 [ 33190 ] 9 | 54 | 54
Speech segs per 3 3 3 3 3 3
speaker

Speech segs per N/A|NA| 6 6 6 6
speaker after
splitting
Total number of 99 | 99 | 540 | 540 | 324 | 324
speech segs
Average duration of|3.22s(3.41s|1.57s| 1.63s | 1.65s|1.73s
(split) speech segs
Average duration of|1.62s|1.62s(0.88s]| 0.90s [0.925[0.91s
(split) speech segs
after silence rem
Max and min N/A [ N/A [2.035] 1.925(2.115|1.94s
duration (split) 0.21s[0.155(0.155]0.21s
speech segs after
silence rem
Amount of speech | 0.7s | 0.7s| All | All | All | All
used per speech seg Avail| Avail [ Avail | Avail
(after silence rem
and splitting)

inputs to the LC. Thus given 4 parameter types for the
PGMMs and two average pitch detection schemes a
total of 63 AGI systems may be evaluated. Three of the
adverse conditions are generated by passing the clean
speech through the three coders. The remaining 4
adverse conditions are generated by convolving the
clean speech with 4 different room impulse responses.
The reverberant environments of interest contain a
number of constants which include room dimensions
(4.5x3.3x3.4 m°), speaker position (center of the room)
and microphone position (4m,0m,2m). Given
reverberation times of 0.3, 0.6, 1.2, and 2.3 s the speech
signal ranged from lightly degraded to virtually
unintelligible, respectively. These times correspond to a
Br of 0.8, 0.9, 0.95 and 0.97 respectively, given our
model of the room. Adverse condition test sets are
generated by degrading the clean test set by one of the
adverse conditions. Four sets of experiments are
conducted as follows:

Experiment 1 is designed to evaluate the ability of the
63 AGI systems to cope with adverse conditions given
that they are trained entirely with clean speech (i.e.
clean data is used for training and validation). The AGI
systems are tested with the clean test set as well as with
test sets for each of the seven adverse conditions.

Experiment 2 is designed to provide an indication of
how well the 63 AGI systems can handle each of the
adverse conditions given that the problem space is
narrowed down to that condition only. This experiment
has eight subsections. Each subsection uses speech
affected by only one different condition (i.e. training,
test and validation speech data are affected by the same

condition). Conditions are no adverse environment
(clean speech) and the 7 adverse environments.
Experiment 3 is designed to provide an indication of
how well the 63 AGI systems can handle each of the
adverse conditions given that the problem space is
narrowed down to that condition and clean speech. This
experiment has four subsections. The first three
subsections each use a different coder. For each of these
three subsections the training data is clean data, the
validation data consists of clean data plus coded data,
and the test data is also clean as well as coded data. The
fourth subsection is for investigating reverberation. We
cannot simply use the same room impulse response for
validation and testing. This is because in a real life
situation the position of the speaker (e.g. hands free
telephony) or the room reflection characteristics may
not be known. Therefore we use a different speaker
position (0.5m, 1.65m, 0.5m)) and B, = 0.9 to generate
an additional room impulse response. For this
subsection the training data is clean speech, the
validation data is clean speech plus data affected by the
additional room impulse response, and the testing data
is clean speech, as well as speech affected by the four
room impulse responses.

Experiment 4 is designed to see if the 63 AGI systems
can be improved to handle all of the different adverse
conditions. In this experiment the training speech is
clean speech, the validation speech is clean speech plus
coded speech using the LPC10 coder, plus coded speech
using the CELP coder plus coded speech using the GSM
coder plus reverberated speech using the additional
room impulse response of Experiment 3. The test speech
is the clean speech plus seven adversely affected speech
sets (one for each of the seven adverse conditions).

Table 2. Single coefficient results (the LC has only 1
input, that shown in each column) averaged over clean
plus all adverse conditions.

Exp.|PGMM [PGMM [PGMM (PGMM |AEP |(AEPSP
no. |Mel-cep|Auto  [Ref LAR
97.8% 192.9% [94.1% |96.2% [96.1% |94.0%
97.6% 1952% [96.7% |96.9% [96.4% |94.5%
97.2% 193.6% [93.2% |94.6% [96.1% |94.2%
97.1% 191.7% [93.9% |93.8% [96.1% |93.7%

Al o [—

From Table 2 it may be seen that the best single input to
the LC is the output of the Mel-cepstral coefficient
trained PGMM. The LCs with input from one PGMM
trained with either autocorrelation or reflection
coefficients, have the highest improvement from
Experiments 1 to 2. This may indicate that the PGMMs
are not able to generalise well from the clean to the
adverse condition affected test data. A possible
explanation for this could be that these two
parameterisation schemes exhibit greater variability
between the clean and adverse condition cases than the
other two parameterisation schemes. From Table 3 it
may be seen that PGMMs trained with Mel-cepstral



coefficients and at least one of the average pitch
detection methods feature in all the most accurate AGI
systems for the four experiments. Furthermore, it is
interesting to note that the most accurate systems all
consist of systems with at least three inputs to the LC.

Table 3: Top 12 AGI systems performance summary
Experiment Number

1 2 3 4

Highest accuracy | 97.8% | 98.6% | 98.3% | 98.5%

Mel-cep | Mel-cep | Mel-cep | Mel-cep

Most accurate

AGI system’s Ref. Auto. Auto. Ref.
LC inputs AEPSP | AEP LAR LAR
AEPSP | AEP

AEPSP

Average accuracy| 97.4% | 98.5% | 98.2% | 98.3%
of the top 12

PGMMs trained with Mel-cepstral coefficients also
featured in every one of the top 12 AGI systems. The
increase in the LCs amount of training conditions from
Experiments 1 to 3 to 4 is accompanied by a respective
increase in the average number of inputs into the LC
from 3.5 to 3.7 to 4.3 for the top 12 AGI systems. From
Table 4 it may be seen that AGI systems trained solely
with clean speech have a marked decrease in accuracy
when tested with speech subjected to adverse conditions
(Experiment 1). From the table it may also be seen that
AGI systems trained and tested with speech from the
same adverse conditions are able to produce high
accuracy (Experiment 2). Finally it can be seen that
AGI systems with LCs trained with data affected by
adverse conditions have an accuracy somewhat between
these two extremes (Experiments 3 and 4).

Table 4: Averaged accuracy results across the 63 AGI
systems for the four experiments

Experiments
Test Data 1 2 3 4
CLEAN 98.1% | 98.1% | 98.1% [ 98.0%
GSM 98.0% | 98.2% | 98.1% | 98.0%
CELP 97.7% | 97.9% | 97.7% | 97.9%

LPC10 97.7% | 98.1% | 98.1% | 98.1%
Br=0.8 94.8% | 97.9% | 96.8% | 96.8%
Br=10.9 93.8% | 97.4% | 96.1% | 95.9%
Br=0.95 [92.8% | 96.7% | 95.0% | 95.2%
Br=0.97 [91.3% | 96.8% | 94.4% | 94.8%

6. CONCLUSIONS

This paper evaluates 63 AGI systems for clean speech
segments and speech segments affected by coding or
reverberation. The average duration of the speech
segments (after silence removal) used for testing the
AGI system is 890 ms (minimum duration 150ms,
maximum duration 2030ms). We have shown that it is
possible to build an AGI system able to handle the
LPC10, CELP and GSM coders with no significant loss

in accuracy. It is also possible to build AGI systems to
significantly reduce the impact of even severe
reverberation by subjecting AGI training data with a
different estimated room response. The best AGI system
had an accuracy of 98.5% averaged over all possible
conditions (clean and adverse).
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