EQUALIZING SUB-BAND ERROR RATES IN SPEAKER RECOGNITION
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ABSTRACT

Recent work in ASR shows that band splitting, forming mul-
tiple paths with recombination at the decision stage, can give
recognition accuracy comparable with the conventional full-
band approach. One of the many interesting questions with
band-splitting relates to the bandwidths of each sub-band, and
the use of frequency warping functions such as mel. This paper
examines the use of mel and linear frequency scales in the con-
text of band-splitting and speaker recognition. We demonstrate
how sub-band error profiles can lead to a new scale, which is
between linear and mel, giving both an equalised sub-band error
profile and an improved overall recognition accuracy.

1. INTRODUCTION

This paper is concerned with splitting the conventional acous-
tic representation into sub-band units and processing these sep-
arately, with recombination at the decision stage. This idea has
been investigated recently in the context of speech recognition
[1] [2] and the complementary one of speaker recognition [3].

Potential benefits of this sub-band approach include robustness
against narrow-band noise , closer simulation of human percep-
tion [4], and the possibility of tailoring the processing in time
and frequency. Here, we focus on the band splitting itself and
filter-bank analysis to give equalised error profiles across sub-
bands.

In order to attain the full potential of the sub-band recognition
approach, it might well be necessary to distribute the sub-band
errors appropriately. For example in the case of noise robustness,
it would be advantageous to remove (or de-weight), those bands
subjected to high-levels of noise. Ideally it would be desirable to
eliminate only those bands which contain no discriminating in-
formation, retaining the remainder, suitably weighted, according
to usefulness.

Here our hypothesis is that it would be beneficial to arrange for
sub-bands to have approximately equal levels of discrimination.
Such a balance might well lead to an optimum arrangement of
sub-band units. This balance across the bands is to be achieved
by a suitable warping function applied in the same manner as the
popular mel scale. In fact, our initial experiments begin with the
two cases of mel and linear scales.
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Figure 1: Concept of a sub-band recognition system

Figure 1 shows the band splitting approach. Conventional filter-
bank analysis, including a change of frequency resolution, fol-
lows the FFT, resulting in a reduced number of spectral bins
to represent the speech in the spectral domain. Here we use
throughout 32 bins, since this number is shown to be a good
choice for speaker recognition [5].

For sub-band operation, these 32 bins are divided into units each
of M bins, leading ultimately to multiple threads for classifying,
with combination before the decision stage.

However, initially recognition experiments are performed using
individual sub-band units across the frequency range, analogous
to a moving average, with a maximum frame-rate. Results for
mel and linear scales are shown in Figure 2 for M=5. Compari-
son should be made with care since centre frequencies and band-
widths differ in the two cases. The recognition experiments are
based on a closed-set, 20 speaker, digit-dependent, single-word
token, speaker identification with 10 versions training and 15 dif-
ferent versions for testing, derived from the BT Millar database.

It can be seen (Figure 2), that the linear scale gives an almost
monotonic rise in error rate with frequency, while both linear
and mel scale profiles exhibit a peak between 700 and 900 Hz.
This peak for the mel case is much larger because, although the
mel scale is itself linear in this region, the bandwidth of the mel
filters is much lower than for the corresponding linear case, to
compensate for the much broader mel bands at higher frequen-
cies.
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Figure 2: Recognition errors for M=5-bin sub-bands vs. fre-
quency

Our goal is to flatten the profiles in Figure 2, so that the level
of discrimination per unit frequency bin is constant while main-
taining, or even improving, the overall recognition performance.

2. A LEVEL SUB-BAND ERROR RATE

Consider the two profiles in Figure 2. Each exhibits some al-
most linear, constant slope sections which suggest that to a first
approximation error rates can be regarded as inversely propor-
tional to the bandwidth of of sub-bands, ie:

1

¢ X Bandwidth; (D

where e; is the experimental evaluated recognition error for sub-
band ¢. Below, this assumed relationship is used in attempting to
derive an equal error profile.

First though, we contrast further the mel and linear error profiles.
The regions above and below about 1500 Hz suggest that a com-
promise between the mel and the linear scale might well lead to
flatter profiles. To illustrate this we integrate and normalise the
error profiles.

Consider:
E, = Z?zl e; and E, = g_; )

where ¢; is the sub-band error, N the total number of sub-bands
and F,, the sum of e; to e,. Then

= = n

AE, =B, - 3

represents the departure of the normed error E,, to an optimal

straight line. This departure is shown in Figure 2 for linear
(lower profile) and mel (upper profile) scaled bins.
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Figure 3: Normalised departure measure, A E,,, for mel (upper)
and linear (lower) filter-banks

For the desired warping function with equal contributions of e;
the profiles in Figure 3 would coincide with the horizontal axis.
Thus, in this respect it can be seen that the mel and linear scale
are opposites.

We investigate these observations and address the question of
whether such alternative scales can be found which both flat-
ten the error profiles and lead to competitive recognition perfor-
mance.

3. A NEW WARPING FUNCTION

Consider a scaler function, Tpe;(f), which links the two error
profiles in Figure 2 such that

emel(f) = Tmel (f)elzn(f) (4)

where Tp,e;(f) is simply the ratio of the profiles at each fre-
quency. Clearly, such a function is directly linked to both the
error profiles (as is obvious from equation (4)) and also the cor-
responding warping function, in this case the standard mel warp-
ing function, finer:

£ < 1000H z

£ > 1000H 2 )

fret = /
mel 2595 log (1 + =)

We propose using such a link to establish a warping function,
similar in form to the mel warping, but which results in a flat
equalised error profile in place in eme;(f). We again make use
of the linear error profile and the associated scalar ratio function,
Tequat(f), which relates e;;,, (f) to our desired flat profile:

eequal(f) = Tequal(f)elin(f) (6)

The task now is to determine the associated warping function,
fequat, which leads to €eguqi(f) in an analogous manner that
the mel warping function, fyer, leads to e (f).

The hypothesis is that

1 dfs

Tolf) * Bondwiah(h < &

)
where the scaler ratio function T, ( f) relates to a given warping,
fuw- This hypothesis comes from the observation that, in the case
of the standard mel warping function, the inverse of the band-
width is approximately proportional to the slope of the warping
function. The case here is that this is a more general relationship,
not applicable just to mel warping.

The error profile is evaluated here for sub-bands with M=5 bins.
As M increases the profile becomes smoother, and as M is re-
duced the results become less informative. If equation (7) holds,
then it follows that the warping function, fequat, can be derived
from integrating Tegyq 1-€. the inverse of ey, (f)-

However this is not simple since it is dependent upon M and,
taking the case M=5 for example, does not generally have an
easily integrate-able form.

Therefore we test the hypothesis expressed in equation (7) in the
case of the standard mel, f,,.; (equation (5)), and also a second
simple two linear case warping function, foysp:

faton = 1.2f
2in =1 0.8f +800

For the comparison the scaler function T'(f) is calculated for
both warpings, and an interpolation of the mel error rates back
to a linear scale has been performed.

£ < 2000H z ®
£ > 2000H 2

The plot for the mel warping in Figure 4 shows a good similarity
for the experimental and mathematical derived curves, except at
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Figure 4: Comparision of experimental result and mathemati-
cal description for weighting function T'(f) a) mel-scale warp-
ing fmei, equation (5), b) 2 component warping function fasin,
equation (8)

low frequencies. For the fo;;, case the mathematical description
and the experimental results show a very good correspondence
with essentially no offset.

3.1. An estimation of a mel-like warping
function

It has been shown that a transformation exists allowing the cal-
culation of the error profile of another filter characteristic with
the knowledge of the linear error profile and the transformation
function. The goal now is to obtain a warping function which
results in an equalised error profile from a suitable T'( f)

k

T(f) = — ©
D= ae®
As a first approximation a mel-like warping is used:
_ kf : f<F
fT_{ alog(f—b)+d : f>F (10)

The frequency F' of the function and its differentiation is con-
sidered to be continuous. The maximum output of the warping
function at a frequency of 4000 Hz should also be 4000.

_ loge
k=ag an
kF =alog(F—b)+d (12)

Observing the graph for the linear and the mel error profile, there
is an intersection of these two curves at approximately 1500 Hz
and the number of filters below and above 1500 Hz is coinci-
dently the same. Therefore the warped frequency range is split
into two equal parts (0 to 2000 Hz and 2000 Hz to 4000 Hz).
Thus

log (4000 — b)

kF =a F=0)

with F = 1500Hz.  (13)

With these equations the parameters in equation (10) can be eval-
uated to give the new mel-like warping function fr in equation

(14).

f < 1500H z
£ > 1500H 2
(14

fr= sf
4912 log (f + 100) — 13738

4. Recognition Results for f,,.; and fr
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Figure 5: Recognition error profile for speaker set 1

Figure 5 shows error profiles directly equivalent to those in Fig-
ure 2, but for fr and fe;- Clearly fr leads to a flatter profile,
although perhaps not suprisingly the peak around 700-900 Hz
remains.

4.1. Splitting into sub-bands

Next, we split the 32-bin frequency band into 2 and then 4
non-overlapping, equal, sub-bands and again perform sub-band
recognition with each band in isolation.

Two sets of results are given in the tables. The first set, “setl”,
relates to 20 male speakers used in the initial experiments, and
to derive the new warping function fr above. The second set is
a cross-validation set of 20 different speakers, again all-male.

[ Warp | Band | Bandl [ Band2 | Band3 | Band4 | Combined |

1 327 327
fmel | 2 1437 737 250
q 3053 | 41.40 | 2167 | 22.73 363
1 3.83 383
fr 2 10.17 9.60 2.90
q 2357 | 33.57 | 2593 | 27.60 287

(Speaker Set 1)

[ Warp | Band | Bandl | Band2 | Band3 | Band4 | Combined |

1 3.73 3.73
fmel 2 15.87 7.03 3.07
4 27.71 | 44.00 2230 [ 21.97 3.80
1 3.40 3.40
fr 2 11.40 8.90 3.20
4 24.90 | 34.60 27.17 [ 2497 3.63

(Speaker Set 2)

Table 1: Recognition error for sub-bands, before and after re-
combination

Table 1 shows the recognition results for the sub-bands and after
recombination with a linear weighted summation for the sub-
band distances. For our tests equal weightings of these distances
were used to produce an overall distance for the final decision.

For the two sub-band case, the sub-bands have similar recogni-
tion errors (10.17% and 9.6%). On the four sub-band case, the
errors are not quite so similar, but nontheless are are more evenly
distribution than for the f,,¢; case.

After recombination, error rates are slightly improved over the



conventional one-band approach - a characteristic we find across
numerous conditions.

4.2. Frequency warping and female speaker

In the previous tests we examined different frequency warping
on a male speaker set. As known the mel warping was estimated
on a male population. Our new warping function fr was also
developed and optimized on a male speaker set. In the next tests
we will obtain the effect of these two warping functions on a
female speaker set with 13 speaker.
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Figure 6: Recognition error profile for female speaker set

In Figure 6 it is conspicuous, that the peak error is shifted to
higher frequencies. It can also be seen that the range with high
error for this peak is broader than on a male speaker set.

The shifting of the peak error is explainable with the higher pitch
of the female speaker. The broader error peak can be achieved
with the harmonics of the pitch. When a higher pitch frequency
was used, the harmonic frequencies are multiple of the pitch.
Therefore the broader peak occur. It is obvious, that for a female
speaker set, another warping should be used to get equalized er-
TOrS.

[ Warp | Band | Bandl | Band2 | Band3 | Band4 | Combined |

1 733 733
Frmel 2 20.72 6.62 523
q 3262 | 43.25 | 49.85 | 3692 7.28
1 182 1382
fr 2 1554 769 431
q 2590 | 30.62 | 3051 | 19.38 508

Table 2: Recognition errors for a female speaker set

If we look on the sub-band errors for different number of sub-
bands (Table 2), the equalized warping function shows a smaller
variation for the error scores. Therefore the equalization works
for female speaker too. It is unexpected, that the error after re-
combination is significantly lower for the new warping fr than
on a mel warping.

5. COMMENTS AND CONCLUSION

The characteristics of sub-band processing in the context of
speaker recognition have been demonstrated and, in so doing,
the mel and linear frequency scales have been shown to be sup-
optimal. For example, both exhibit high error-rates just below
1000 Hz.

A new approach, based on error profiles, is proposed for deriving
alternative warping functions, and a preliminary example (fr)
is shown to go some way to equalizing error rates across sub-
bands, without degrading overall performance. More sophisti-
cated forms of fr are likely to further improve performance, for

example in the region of 1000 Hz where error rates remain high
- see Band 2 in Table 1.

Results for the cross-validation set (Set 2) mirror very well the
results for the original speaker set. It is interesting to note that
in all such experiments it is found that 2 sub-bands when recom-
bined out-perform the conventional, single band case.

Test with an all-female speaker set gives a much lower overall
error with the new warping function compared with the standard
mel (4.8% cf 7.3%), although the error distribution across the
sub-bands requires further flattening for the female set.
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