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ABSTRACT

Automatic identification of non-linguistic speech features
(e.g. the speaker or the language of an utterance) are cur-
rently of practical interest. In this paper, we first impose a
set of requirements that we think a statistical model used in
non-linguistic feature identification should satisfy. Namely,
these requirements are capturing both short and long term
correlations in addition to maintaining a certain acoustic
resolution. A model satisfying these requirements, and in
the same time having the attractive feature of requiring
no transcribed speech material during training is proposed.
Experimental evaluation of the approach in speaker recogni-
tion on the TIMIT database is presented, where recognition
rates up to 99.2 % are achieved.

1. INTRODUCTION

Automatic identification of non-linguistic speech features
! (e.g. speaker identification or language identification)
are currently of interest in many practical systems. A key
point in successful acoustic modelling for automatic non-
linguistic feature recognition is that of characterizing the
features’s acoustic space with sufficient resolution and in the
same time capturing the feature’s specifities. For a given
acoustic resolution (e.g. number of Gaussians) we distin-
guish different modelling approaches based on their ability
of capturing short term (frame level) and long term (unit
level)correlations, as both are assumed to be potentially
discriminant in the identification process. Models proposed
in the literature differ in their ability of statisfying these
requirements.

For example statistical approaches in the field of auto-
matic talker recognition can be classified according to this
point of view. Frame based techniques that use a mixture of
Gaussians [1], or a VQ codebook [2] are by principle unable
to capture both types of correlations, while those utilizing
a conventional frame level mixture distributed among dif-
ferent states (e.g. an ergodic HMM) [3] model only long
term correlations and ignore the short term ones. On the
other hand segment based techniques as matrix quantiza-
tion methods [4, 5], orthogonal polynomial representation
[6], and autoregressive models [7] aim at modelling only
short term correlations. Also in the field of automatic lan-
guage identification (see [12, 13] for a review) Gaussian mix-

I This term was proposed by Lamel and Gauvin in [§]

tures don’t satisfy both requirements. While the widely
used approach of HMM tokenization followed by phono-
tactic modelling captures only long term correlations, and
leads to the need of long speech intervals (on the order of
45 seconds) to perform accurate identification. In addition,
the accuracy of using phone models of a certain language to
tokenize another language is clearly questionable. ? More-
over, both fields i.e automatic speaker and language identi-
fication are usually treated as separate problems, inspite of
their strong resemblance from an acoustic modelling point
of view.

Recently a realization satisfying the above point of view,
in capturing both types of correlation, and pursuing a
unified approach to non-linguistic feature identification,
was reported in [8]. In this implementation, the acoustic
space is divided into homogenous regions corresponding to
phonemes, and each region is associated to the state of a
large ergodic Markov model, and is characterized by a left to
right continuous density hidden Markov model (CDHMM).
Feature identification reduces to parsing a test utterance
in a Viterbi sense, using all existing models and choosing
the highest scoring model. However, model training in this
approach requires a set of phonetically labelled speech ma-
terial, in addition to speaker independent phonetic models
for appropriate initialization. °

These requirements maybe a limitation in practical situ-
ations, e.g. for automatic language identification systems,
where the flexibility of adding new languages, with possibly
unknown phonetic sets, may be desirable.

In this paper we first identify the requirements that we
think a statistical model used in non-linguistic feature iden-
tification must satisfy as:

e Maintain a certain acoustic resolution.
o Capture short term correlations (frame level).
o Capture long term correlations (unit level).

o Can be constructed without the need for transcribed
speech material.

Then we present a realization satisfying these requirements,
together with an experimental evaluation of the proposed
method for speaker recognition on the TIMIT database.

2An interesting approach to automatic language identifica-
tion that also doesn’t require transcribed speech was recently
proposed in [14].

3As noted earlier the accuracy of using phone models of a
language to tokenize another language is clearly questionable.



The paper is organized as follows. Section 2 gives a
general overview of the proposed method. An automatic
segmentation method related to system construction is re-
viewed in Section 3. Section 4 discusses stochastic trajec-
tory models which are related to acoustic space characteri-
zation in our method. A probabilistic labelling strategy is
introduced in Section 5. Sections 6 and 7 present the use
of the model for identification, and its experimental evalu-
ation. Finally we conclude in Section 8.

2. GENERAL OVERVIEW

To satisfy the above requirements we propose to model a
feature space using a mixture of stochastic trajectories (of
size K)[9, 10], this mixture maintains the required acoustic
resolution and at the same time captures short term cor-
relations. We then develop a probabilistic labelling strat-
egy which, given the mixture model, assigns the training
material to a set of acoustically homogenous regions corre-
sponding to the mixture components. At this end, we have
two alternative ways to charcterize the acoustic space for
feature identification.

The first alternative is to use the mixture model itself
to characterize the acoustic space. In this case the model
is conceptually comparable to other segment based ap-
proaches (e.g. [4]-[7] in the field of speaker identification ).
This approach will be called the segmental approach (SEG).
The second alternative consists in applying the probabilis-
tic labelling strategy to assign the training data to K dis-
tinct acoustic regions. Then to construct an ergodic HMM,
where each state corresponds to an acoustic region, and is
characterized by a continuous density left to right HMM
constructed from the corresponding training data. This
model will potentially capture both types of correlations,
i.e., short term correlations through the state HMMs and
long term correlations through the ergodic Markov model.
In addition it is constructed automatically from unlabelled
training speech. This model will be referred to as the seg-
mental HMM (SHMM).

In the light of the above discussion the basic ingredients
of the proposed approach are: an automatic segementa-
tion procedure to initialize the stochastic trajectory model,
the stochastic trajectory model, the probabilistic labelling
strategy, and finally the use of the model for feature identi-
fication. Each of these components will be discussed in the
following sections.

3. AUTOMATIC SEGMENTATION

In this section we will present an automatic segmentation
procedure which is used to bootstrap the training process
of the stochastic trajectory mixture model (discussed in the
next section). The algorithm is due to Svendsen and Soong
[11], and is briefly reviewed here.

For an utterance {z1,....... ,zr} of T frames the total dis-
tortion associated to a segmentation which consists of N,
segments can be written as:

D:ZS: Z d(w:, Cy) (1)

n=1t=t,_1+1

where x; is the t'" frame of the n'™ segment starting at
frame ¢,—1 + 1 and ending at ¢,, where by definition t; = 0,
and ty, = T, and C,, is the centroid of the nth segment,
which for the Fuclidean distance used in this paper can be

written as:
tn

1
Cn = —— dYoow (2)
t=tn,_1+1

The objective of the segmentation algorithm is to assign
segment boundaries to minimize the total distortion in (1).
This can be efficiently achieved using dynamic program-
ming(DP). The cumlative distortion E(t) at frame ¢ can be
written as:

t

{E(t—d)+ Z d(z:, Ci—ap1)} (3)

i=t—d+1

E(t) = min

dmin<d<dmaz

where dpin and dimmer are minimum and maximum dura-
tion constraints, and C{_,,, is the centroid of the segment
{zi—at1,....,x¢}, and is calculated as in (2). When the end
of the utterance is reached the optimal segmentation can
be retreived using backtracking.

4. STOCHASTIC TRAJECTORY MIXTURES

A speech segment X, of length d is modelled as being gener-
ated by a mixutre of K (mixutre size) trajectory generators,
and we can write:

P(X,|d) = Z Py P(Xnlk,d) (4)

k=1

where Py is the a priori probability of mixture component
k, and each trajectory is assumed to consist of a set of
Q(=5 for the current implementation) independent Gaus-
sian states. Hence P(X,|k,d) can be written as:

Q-1
P(Xnlk,d) = H N(@ni; pikis 2k i) (5)
i=0
where N() is a normal distribution, with mean i, and
covarlance Ekyi(diagonal covarlances are used in this Work)7
and z,;’s are obtained by linear resampling of the segment
X, to the @ points of the trajectory. The model is charc-
terized by the parameter set A = {Px, ik, Zik} Where
1<k < K0<4i<@—1, and the apriori probabilities
satisfy the stochastic constraint Zi‘zl Pr=1.
In the following subsections we discuss the training process
of the stochastic trajectory model.

4.1. EM estimation

Given a training set X = {X,, 1 < n < N}, the role of the
training algorithm is to estimate the model parameter set
A to maximize the likelihood of the training data. This can
be formulated as:

N
A* = argmax P(Xnldn, A 6
g H (Xnldn, A) (6)
An efficient solution to this problem can be obtained using

the expectation-maximization (EM) algorithm, and consists
in applying the following EM steps:



1. E-step

P(k| X, d) = If(X"M’d)Pk (7)
K P(Xolk, d) Py
2. M-step Y
Py = %ZP(Mde) (®)
1 v
ik = 5 ZP(Mde)l“n,i (9)

n=1

N
1
Dik = 55 ZP(Mde)l"n,il"g,i — pikpix (10

n=1

starting from an initial parameter estimate until conver-
gence, where each iteration ensures the increase of the ob-
served data likelihood.

4.2. Automatic resegmentation

Once the model parameters are obtained, they can be used
to resegment the training material. For an utterance of
length T' the segmentation problem can be formulated as:

Ns
S* = argmax H P(Xtt:_1+1|tn—1v bn, A) (11)
S n=1

where § = {t1 = 0,t2, . ceecevveeenn. Jtn, =T — 1} is a segmen-
tation of the utterance having N. segments, and Xf,’f_1+1
is used to denote {z¢, _;4+1,cc.... T, )

The above segmentation problem can be efficiently solved
using dynamic programming (DP). The cumulative log
probability at frame t (L(t)) is calculated as:

L(t) = max
dmin Ld<dmaz

{L(t = d) + d ¥ log P(X{_ap1|d)} (12)

where 0 < ¢t < T — 1, T is the utterance length,and
dmin, dmer are minimum and maximum duration con-
straints on the segment length, and the multiplication by
d is a heuristic used to account for the resampling of the
segment into a fixed length sequence. When the end of the
utterance is reached the best segmentation can be retreived
by using backtracking, if the best segement duration is kept
for each time instant during the DP search.

4.3. Summary of the training algorithm

The complete training algorithm of the trajectory model
consists of iterative application of the EM steps (7) and (8-
10), and the resegmentation step (12) starting from appro-
priate initial model parameters. A summary of the whole
algorithm is outlined below:

1. Perform initial automatic segmentation of the training
speech as discussed in Section 3.

2. Using the results of the nitial automatic segmentation,
initialize the mixture components using LBG algorithm
with distance measure (5), and ML parameter estima-
tion.

3. Resegment the training speech using the mixture model
by applying the DP algorithm in (12).

4. Apply the EM training step, by repeating the following
two steps until convergence

e For each training segment perform the E-step (7).

e Estimate the model parameters using the M-step
(8-10).

5. If convergence is not met go to step 3.

5. PROBABILISTIC LABELLING AND
MARKOV MODEL CONSTRUCTION

The trajectory mixture model can be used to assign the
training speech to acoustically homogenous regions, which
we refer to as probabilistic labelling. This can be formulated
as:

Ns

(5.8)" = argmax [ POXE_paltnossto k) (13)
’ n=1

where § is a segmentation as defined above, and K is a set
of mixture labels.

Again as in the case of the segmentation problem this la-
belling strategy can be efficiently solved using dynamic pro-
gramming (DP). Let L(t) be the cumulative log probability
score at frame ¢, and dmm(:2 for the current implemen-
tation) and dimaz(=20 for the current implementation) be
minimum and maximum segemnt duration constraints re-
spectively. We can write:

{L(t=d)+dslog P(X{_ gy k. d)}

(14)
By keeping the best duration and label index at each time
frame, we can backtrack the best label sequence once we
reach the end of the utterance.

After probabilistic labelling of the training data, all seg-
ments corresponding to a mixture label are assigned to the
same acoustic region, and are used to construct a left to
right HMM for that region. This HMM construction pro-
cess can be performed using classical Baum-Welch train-
ing. In addition the bigram frequencies of the labels are
used to estimate the transition probabilities of an ergodic
HMM, where each state of this model is characterized by
the corresponding region HMM. Further refinement of the
model parameters can be done by iterating segmentation of
the training data and model estimation until convergence.
However, this was not done in this paper. The model con-
struction process is summarized below.

L(t) = max max
LSHEK dppin <d<dman

1. Perform probabilistic labelling of the training data. By
applying the DP recursion (14) and backtracking.

2. Assign segments having the same label index to the
same acoustic region.

3. For each acoustic region construct a left to right

CDHMM.

4. Assign each region to a state of an ergodic HMM, and
estimate the trasition probabilities of this model as bi-
gram frequencies of the labels.



6. FEATURE IDENTIFICATION

A model (whether segmental or segmental HMM) is con-
structed for each non-linguistic feature of interest. Non-
linguistic feature identification includes parsing an unknown
test utterance using all existing models, and choosing the
feature yielding the highest probability score. For the tra-
jectory mixture model the parsing step uses DP which is
similar to (12), while for the Ergodic HMM it utilizes classi-
cal Viterbi decoding. Pruning can be optionally introduced
for both models to save computation.

7. EXPERIMENTAL RESULTS

We evaluate the proposed approach for speaker recognition
on TIMIT. 114 speakers corresponding to the first two di-
alect regions are used in the test. 8 sentences (sx+si) from
each speaker are used for training, and 2 sentences (sa)
are used for test (2*¥114 = 228 test utterances). 12 MFCC
are used for speech parametrization. We give results for
both trajectory mixture (SEG) and segmental HMM with
state HMMSs having 1 mixture component/state (SHMM1),
and 2 mixture components/state (SHMM2). The results
are shown in the table below. The presented results show
the efficacy of the approach. For the presented results the
segmental HMM approach outperforms the segmental one.
However, further experimentation is needed to justify the
results.

Mixture | SEG | SHMM2 | SHMM1
size
4 87.3 98.3 97.8
8 96.5 99.2 98.3

Table 1. Percent accuracy speaker recognition results on the
TIMIT database.

8. CONCLUSION

We have presented a unified statistical approach to non-
linguistic speech feature identification. The approach is
based on charcterizing the acoustic space with a mixture
of stochastic trajectories. Based on this representation two
distinct approaches to non-linguistic feature identification
were discussed. The first is based on the stochastic tra-
jectory mixture, while the other uses a probabilistic la-
belling strategy to charcterize the feature space with an
ergodic Markov chain. The latter approach captures both
short term and long term correlations, and in the same time
doesn’t require transcribed speech material for training. In
the experimental evaluation the ergodic model appraoch
outperformed the mixture trajectory one. However, fur-
ther experimentation is still needed for better justification.
Also we plan to apply the proposed methods to the problem
of automatic language identification.
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