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ABSTRACT

In this paper we present a new approach to text in-
dependent speaker verification. Speaker models are
created from complete data sets, derived from a set of
sentences. A decision on an identity claim is based on
the calculation of the mean next neighbour distance
between a speaker model and a test utterance. A Vec-
tor quantization technique serves to efficiently extract
this frame based similarity measure. It 1s the purpose
of this paper to investigate this new approach and
test 1ts performance on a large database as a function
of a number of parameters, i.e., the number of data
vectors in each model and the length of the test ut-
terance. The best results on a set of 108 speakers are
0.93% false rejection rate and 0.98% false acceptance
rate.

1. INTRODUCTION

Speaker recognition and verification are challenging
problems in signal processing. A number of different
approaches have been proposed to tackle these tasks,
for example Hidden Marcov Models, Gaussian Mix-
ture Models or Vector quantization (Vq) procedures,
see e.g., [6], [9], [11] and [5]. All these model based
approaches perform a data reduction in the first step,
as the complexity of the models is much smaller than
the complexity of the data set. We argue that the
data reduction aiming at a reduction of the complex-
ity also entails a loss of information, which might be
relevant for the verification task.

We have reported previously on a new approach [2]
which yields promising results for text-independent
speaker verification as well as for various other prob-
lems in the fields of automatic speech processing, i.e.
text-independent speaker recognition and accent clas-
sification. It is the purpose of this paper to carry
out a series of text-independent speaker verification
experiments to further investigate this new approach.

In our approach a speaker model is formed from a
complete data set of sequences of 12 dimensional mel-
frequency cepstrum coefficients (mfec) derived from a
set of utterances. Each speaker is represented by a

12 dimensional data set in the mfcc space. Speaker
recognition is carried out by calculating the mean
next neighbour distance in the 12 dimensional mfcc
space between data vectors of a transformed test ut-
terance and a speaker model. The identity claim is
accepted, if the mean next neighbour distance falls
below a global threshold obtained in a training pro-
cess.

The search for the next neighbour of a test data vector
amongst the data vectors of a speaker model involves
a large computational effort. In order to reduce this
effort we apply a hierachical neural Vq technique [1].
Each codebook vector is associated with a subset of
the data set. The restriction of the search for the
next neighbour to a limited number of subsets al-
lows a drastic reduction of the computational effort.
However, the reduced search might affect the overall
performance of the system. It is the purpose of this
paper to thoroughly study this approach and answer
the following questions: How does the reduced search
for the next neighbour affects the performance? How
does the number of data vectors in the test utterance
and in the model affect the performance?

The model design and the feature extraction are pre-
sented in the next section. In Section 3 the method is
applied to text-independent speaker verification. The
paper concludes with a summary and discussion.

2. MODEL DESIGN

"The best model for a data set ts the data set”. Ac-
cording to this statement we design a model for a data
set X CR™, with X ={x; e R" | i=1,...,N.} by
itself, where N, is the number of frames.

Pattern recognition or classification requires the ex-
traction of features from a test data set ¥ = {yr €
R*| k=1,...,Ny}. Here, we consider the special
case Ny > Ny. Feature extraction is performed by
calculating the mean next neighbour distance

between each data vector y and its next neighbour



x'(y) in X. (---), denotes an average over all data
vectors in Y.

The search for the next neighbour according to Eq.
(1) is a very time consuming procedure. However, a
large number of data vectors, far away from y, might
reasonably be excluded from the searching process.
A codebook obtained by a Vector quantization pro-
cedure might serve to limit the search for x'(y) and
thus significantly reduce the computational effort.

Vq (see e.g. [4]) addresses the problem of mapping a
data space X C R" onto a finite set of N (N, > N)
codebook vectors w, € W = {w, € R" | r =
1,...,N}. Each data vector x € X might be as-
signed to the next codebook vector w,., € W by the
condition

[l — W | = min [lx — w, . (2)

A codebook W therefore defines a partition of the
data space, a so-called Voronot tessellation. All data
vectors within a Voronoi cell are associated to one
codebook vector.

In order to reduce the computational effort to cal-
culate d,, we might limit the search for the next
neighbour to one Voronoi cell. First w,, is obtained
for each data vector y similar to Eq. (2). Then the
Voronoi cell of w,, is searched for the next neighbour
x'(y). Equation (1) then changes to

dnn = {|IX'(¥) =¥}y (3)

Equation (3) entails a speed up by a factor of ap-
proximately N as compared to Eq. (1). A further
reduction might be achieved by hierarchically struc-
tured codebooks as proposed in [3].

However, d,, and ci,m might slightly differ. When-
ever data vectors x’'(y) are not in the subsets of w,,
ci,m is an over estimation of the mean next neighbour
distance. To remedy the weakness of an over estima-
tion we recently proposed a framework that allows a
extension of the search space to a certain number of
Voronoi cells surrounding y (see e.g. [3]) by means of
a fuzzy Vq procedure [10, 1]. This approach allows to
trade off the accuracy of the calculation of d,, and
the computational effort.

3. TEXT INDEPENDENT SPEAKER
VERIFICATION EXPERIMENTS

In the following section we apply the described
method to text-independent speaker verification. The
results are based on a new set of experiments which
are more thoroughly discussed than the results pre-
viously reported [2]. Here, we focus on the follow-
ing questions: How does the reduced search for the
next neighbour affect the performance? How does the
number of data vectors in the test utterance and in
the model affect the performance?

3.1. Speech coding

The speech material is a subset of 108 native Aus-
tralian English speakers taken from the Australian
National Database Of Spoken Language (ANDOSL),
see e.g. [7]. The database comprises a set 200 pho-
netically rich, read sentences for each speaker. The
sound pressure signal sampled at a rate of 20 kHz
is parameterized by 12 mel-frequency cepstrum coef-
ficients by applying a Hamming window of 16 msec
duration and 5 msec step size. The mfcc spectrum
is pre-emphasised by a filter coefficient of 0.97. A
silence detection is performed by cutting of frames
below a threshold of 0.1 of the normalised log energy.
The experiments are performed on a set of 54 male
and 54 female speakers.

3.2. Speaker models and experimental setup

To train and test the system we selected for each
speaker three different sets of sentences: one set to
create the model, one to adjust the threshold and
a third to test the speaker verification system. For
each speaker these three different sets are randomly
selected from the database of 200 sentences. This
setup ensures, that the verification experiments are
text independent.

From the first set of sentences we designed speaker
models of three different sizes, from five, twenty and
forty sentences. The average number of data vec-
tors in each of these models 1s 3,422, 13,858 and
25,671, corresponding to 17.11, 69.3 and 128.4 sec-
onds recorded speech after cutting off silence. Each
model 1s constructed with a codebook of 10 codebook
vectors. The models consisting of the codebook and
the data set are stored in a binary data structure.
The necessary disc space for each speaker model is
0.18,0.72 and 1.33 MB, corresponding to five, twenty
and forty sentences in the model.

We used the second set of sentences to calculate the
global threshold for the similarity measure to de-
cide about the identity claim of a speaker. For each
speaker eight imposters where randomly selected. For
different sentences of these imposters and of the true
speaker the mean next neighbour distance to the true
speaker model is obtained. The global threshold is
identified with that value of the mean next neighbour
distance where the false rejection rate (frr) is equal
to the false acceptance rate (far). This error is the
so-called equal error rate (eer).

The performance of the system is tested on the third
set of sentences using the remaining set of imposters
and the true speaker. We tested utterances with a
length of one and two sentences. In order to answer
the question of how the reduced search for the next
neighbour affects the performance, we consider the
two limiting cases: a full search for the next neighbour
according to Eq. (1) and a reduced search within only



one Voronoi cell according to Eq. (3). The results are
summarized in the next section.

3.3. Results

The text-independent speaker verification experi-
ments are carried out for three different speaker
groups: b4 male speakers, 54 female speakers and a
group containing both genders (108 speakers). The
total number of imposter and true speaker attempts
in each of these three groups which are used to ob-
tain the global threshold are summarized in Table 1.
The number of attempts in the test set are shown
in Table 2. In the following we first report on the

speaker set imp. | true sum
male/female | 2,160 | 540 | 2,700
male + female | 4,320 | 1,080 | 5,400

Table: 1: Total number of imposter and true speaker
attempts to obtain the global threshold for the group of
male (female) speaker (row 1) and the group consisting
of both genders (row 2).

speaker set imp. | true sum
male/female | 12,150 | 270 | 12,420
male 4+ female | 53,460 | 540 | 54,000

Table: 2: Total number of imposter and true speaker
attempts in the test set for the group of male (female)
speaker (row 1) and the group consisting of both genders
(row 2).

results for the five-sentence-speaker-models. Tables
3 and 4 summarize the results for a complete and a
reduced next neighbour search. The decision in each
experiment 1s based on one test sentence. The errors
are given in percent.

speaker set eer frr far | mean;es:
male 1.53 || 1.48 | 2.23 1.85
female 5.00 || 3.70 | 2.89 3.30
male + female | 1.62 || 0.74 | 2.35 1.50

Table: 3: Results of text-independent speaker verifica-
tion for speaker models designed from five sentences:
equal error rate (eer) derived from the training set, false
rejection rate (frr), false acceptance rate (far) on the
test set and the mean value of frr and far (mean;.st).
The decision is based on one sentence. The next neigh-
bour search is performed on the complete data set.

A comparison of the eer shows only a small difference
between the full and the reduced search, whereas the
meany,g; 18 slightly higher for the reduced search. The
computational effort for the reduced search is approx-
imately ten times smaller than for the full search.

Table 5 shows the results for a reduced next neighbour
search and decisions based on two sentences. Table

speaker set eer frr far | mean;es:
male 1.44 || 1.85 | 2.10 1.98
female 5.05 || 4.44 | 3.05 3.75

male + female | 1.67 || 1.48 | 2.31 1.90

Table: 4: The same setup as above, but the next neigh-
bour search is limited to one Voronoi cell.

speaker set eer frr far | mean;es:
male 0.79 || 0.37 | 1.04 0.71
female 2.96 || 3.70 | 1.14 2.42
male + female | 0.78 || 0.93 | 0.98 0.96

Table: 5: The same setup than in the previous Table,
but here a speaker attempt comprises two sentences.

speaker set eer frr far | mean;es:
male 0.65 || 0.74 | 0.74 0.74
female 2.36 || 1.85 | 0.91 1.38
male + female | 0.76 || 0.56 | 1.26 0.91

Table: 6: Results for speaker models designed from
twenty sentences, a next neighbour search limited to
one Voronoi cell and one test sentence.

5 clearly reveals that the increase in the length of
the test utterance also results in a lower eer, frr and
far. A similar effect is observed if we increase the
number of data vectors per model. Table 6 shows the
results for the twenty-sentence-models. A comparison
of Table 5 and 6 shows, similar results for the set of
the male and the mixed gender speakers, whereas the
mean values of far and frr differ about one percent
for the female speakers.

In order to determine, if a further increase in the
number of data vectors per model entails a further
increase in the performance, we trained models for ten
randomly selected male speakers from forty sentences.
Again, we randomly selected eight imposters for each
speaker to obtain a global threshold. The system is
tested on the remaining set of male speakers. The to-
tal number of imposter and true speaker attempts in
the training and the test set 1s summarized in Table 7.
A comparison of the forty-sentence-models with the
twenty-sentence-models on the same speaker subset is
shown in Table 8. As a result we find that a further
increase in the total number of data vectors per model
yields a smaller eer and a smaller far. In this example

speaker set | imp. | true | sum
train (male) | 400 | 100 | 500
test (male) | 2,250 | 50 | 2,300

Table: 7: Total number of imposter and true speaker
attempts in the training set for the group of training
(row 1) and the test speaker (row 2) for the set of ten
male speaker models.



speaker set eer frr far | mean;es:
male (40 sen) | 0.75 || 0.00 | 0.13 0.07
male (20 sen) | 1.25 || 0.00 | 0.71 0.36

Table: 8: Results of text-independent speaker verifica-
tion for speaker models designed with forty sentences
(row 1) and twenty sentences (row 2) for ten different
speakers. The next neighbour search is limited to one
Voronoi cell. The decision on the speaker attempt is
based on one sentence.

the frr is 0.0% for both experiments.

Generally we find that in each experiment the error
rate for the female speaker is much higher than for
the male speaker. A similar result has been observed
for speaker recognition experiments [3] as well as for
different databases [9]. A comparison of the mixed
gender experiments with the male speaker shows com-
parable error rates. A closer investigation reveals that
this effect is due to a very low cross gender (male-
female, female-male) confusion.

4. SUMMARY AND DISCUSSION

In this paper we presented a new approach to speaker
verification. Here, models are designed from complete
data sets. Pattern matching is performed by calcu-
lating similarity measures between data sets. In our
approach we use a Vq process to allow an efficient
calculation of the similarity measure, rather than to
reduce the complexity of the data set.

We showed that the reduced search for the next neigh-
bour causes only a small degradation in the perfor-
mance and that an increase in the total number of
data vectors in a model and in the test utterance
reduces the error rates.

The quality of a speaker verification system depends
on a number of parameters such as the error rates,
the number of speakers, the database and its charac-
teristics and the computational effort for training and
testing. Therefore, a comparison of different systems
has to be carried out very carefully and would extend
the frame of this paper. For a closer discussion about
the comparison of different speaker verification and
recognition systems see [8]. However, if we only con-
sider the number of speakers and the accuracy of the
system then we find that our approach outperforms
the approach described in [5]. Reynolds [9] reported a
mean;.s: in the range of 0.24—0.5% on a subset of the
TIMIT database (112 male and 56 female speakers).
For a more thorough comparison of our approach with
state of the art systems we are currently repeating our
experiments on benchmark databases for these tasks.

The training and testing of our system is very sim-
ple and efficient. The calculation of the mean next
neighbour distance for one test sentence and a five-
sentence-model takes about 3.2 sec on a SUN SPARC

10 with 64 MB RAM. We use a Manhattan Metric
rather than an Euclidian distance measure to calcu-
late the distances in Eqgs. (1-3). For an optimal choice
of the codebook size with respect to the number of
data vectors the calculation of the distance to the
next neighbour involves only 4n\/N, additions and
substructions per test frame, where N, is the number
of data vectors and n the dimension. For hierachies of
codebooks as proposed in [3] the number of operations
is even smaller.

REFERENCES

[1] D. R. Dersch and P. Tavan “Control of annealing
mn minimal free energy vector quantization”, Proc.

ICNN-94, pp. 698-703, Orlando, 1994.

[2] D. R. Dersch, “The acoustic fingerprint: A
method for speaker identification, speaker verifi-
cation and accent identification”, Proc. SST-96,

pp- 307-312, Canberra, 1996.

[3] D. R. Dersch, “Feature exiraction from complete
data sets: A new approach to pattern recog-
nition and ts application to tert-independent
speaker identification”. ACNN-97, forthcoming,
Melbourne, 1997.

[4] R. M. Gray, “Vector quantization”, IEEE ASSP
Magazine, vol. 1, pp. 4-29, 1984.

[6] A. L. Higgins and L. G. Bahler, “Text-independent
speaker verification by discriminator counting”,

Proc. ICASSP-91 pp. 405-408, 1991.

[6] T. Matsui and S. Furui, “Comparison of Text
Independent Speaker Recognition Methods Using
VQ-distortion and Discrete/Continuous HMM’s”,
Proc. ICASSP-92, pp. 157-160, 1992.

[7] B. Millar, J. Vonwiller J. Harrington, and P. Der-
mody, “The Australian National Database of Spo-
ken Language”, TCASSP-94, pp. 67-100, Ade-
laide, 1994.

[8] J. Oglesby, “What’s in a number? Moving be-
yond the equal error rate”, Speech Com., vol. 17,
pp. 193-208, 1995.

[9] D. A. Reynolds, “Speaker identification and veri-
fication using Gaussian mixuter speaker models”,

Speech Com., vol. 17, pp. 91-108, 1995.

[10] K. Rose, E. Gurewitz and G. Fox “Statistical
mechanics and phase transitions in clustering”,

Phys. Rev. Lett., vol. 65, pp. 945-948, 1990.

[11] F. K. S. Soong, A. E. Rosenberg, L. R. Rabiner
and B. H. Juang, “A Vector Quantization Ap-
proach to Speaker Recognition”, Proc. ICASSP-85,
pp. 387-390, 1985.



