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ABSTRACT

Gaussian mixture models (GMM’s) have been
demonstrated as one of the powerful statistical methods
for speaker identification. In GMM method, the
covariance matrix is usually assumed to be diagonal. That
means the feature components are relatively uncorrelated.
This assumption may not be correct. This paper
concentrates on finding an orthogonal speaker-dependent
transformation to reduce the correlation between feature
components. This transformation is based on the
eigenvectors of the within-class scatter matrix which is
attained in each stage of iterative training of GMM
parameters. Hence the transformation matrix and GMM
parameters are both updated in each iteration until the
total log-likelihood converges. An experimental
evaluation of the proposed method is conducted on a 100-
person connected digit database for text independent
speaker identification. The experimental result shows a
reduction in the error rate by 42% when 7-digit utterances
are used for testing.

I. INTRODUCTION

Gaussian Mixture Model (GMM) has been successfully
applied to speaker identification [1]. In GMM method,
diagonal covariance matrices are commonly used.
However, the original feature components are not
uncorrelated. This assumption of completely ignoring
feature correlation may not be correct [2] [3] and will
degrade the identification accuracy. Hence full
convariance matrices have to be used in order to count
the fact of the correlations between feature components.
Unfortunately, such models are computationally
expensive and require large amount of training data. An
alternative way is to use orthogonal transformation to
make the transformed feature components less correlated.

Here we propose a new transformation which is
incorporated into model training. This means the feature
transformation is jointly optimized with the diagonal
GMM parameters.

II. GAUSSIAN MIXTURE SPEAKER
MODELS

A Gaussian mixture density is a weighted sum of M
component densities and given by the equation
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where X is a D-dimensional feature vector, b, (X)-

=1,...,M, are the component densities and w,, i =/,..., M,

are the mixture weights. Each component density is a D-
variate Gaussian function of the form
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with mean vector f and covariance matrix X .. The

mixture weights satisfy the constraint that Z,A:’Il w; =1.

The speaker model is then represented by the mean
vectors, covariance matrices and mixture weights. These
parameters are denoted by a set

A={w, g, 2} 1=1,..,M.

Given a sequence of 7 training vectors X= {X’l ,...,)?T} ,

the most popular method to derive the parameters A is
based on maximum likelihood (ML) estimation in which

we begin with an initial model A, and estimate a new

model /7_, such that L(X‘Z) > L(X|/1) where

L(X|1) =¥ log p(%,|2) @)

The reestimation formulas are as follows:
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where the posteriori probability of the ith mixture is given
by
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When the covariance matrix X is assumed to be
diagonal, the equation (6) can be simplified to

L. U p, for1<j<D
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where x, and y; ; are the jth element of the vector
X, and 4, , respectively, and p, ; is the jth diagonal

element of the diagonal matrix i/ .

III. TRAINING OF TRANSFORMATIONS
AND GMM PARAMETERS

In discriminant analysis of statistics [4], when samples
are partitioned into more than one class, some measure
criteria are used to formulate the separability among
classes. Within class scatter matrix, which shows the
scatter of samples around their respective expected
vectors, is such a criterion and is expressed by

S, =Sozx (14)

where M is the number of classes, @ and £, are the

prior probability and the covariance matrix of ith class,
respectively. Instead of treating all training vectors as a
single class, the transformation and the estimation will be
performed alternatively for all classes.

When we estimate the GMM parameters with equations
(5) through (8), we can define a within class scatter
matrix according to equation (14) and express it as
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The transformation is an eigenvector matrix of this within
class scatter matrix which is attained in each training
iteration of GMM parameters. So, the transformation
matrix and GMM parameters are both repeatly updated in
each iteration until the total log-likelihood is convergent.
The procedures are as follows:

1. Initialization

(a) Set initial model A©® = @, 50, AV}  for
1</<M.
initial model is attained by training X= {,?1 ,‘,,,}T}

with LBG algorithm.

A" is a diagonal covariance. This

(b) Define x” =, for 1<;<7 . This vector set is

denoted as x® = {xl(o),...,x(ro)}

(¢) Set the initial transformation (Q'“) be a Dx D
unit matrix where [ is the dimension of feature
vector

(d) Define Q=(Q")andn=1. » indicates the

iteration index.
2. Recursion

(a) Transform feature vector

X = {Xl(n‘l) ’”.,X;_n*l)} to X' = {Xl(”) ""’X(T”)} by
the equation

X[(”) — (Q(ﬂ‘l))'X[(”‘l) for |7 . (16)

/7.("_1) — {5,("_1),ﬁ,-("_l),g(,-n_l)} is the GMM of X("_])_

Then we obtain a transformed model,

A = (o, p™ A

W=y for 1< i< M (17)
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(b) Let 2" be the initial model and feature set Y~
be the training vectors. We can re-estimate the
model /7,('”) ,&,ﬂ) . and a’;l(m, by
equations (4) to (6). In this iteration, we must
compute the scatter matrix by

parameters,

Sw(n)

S ST A AN Yot ) @0
i i |

()

then we can decompose § into the following

equation
8,7 = QAT Q) @1

where A'” is a diagonal matrix whose diagonal

(n)

elements are eigenvalues of § ', and the columns

of the matrix Q‘”’ are eigenvectors.

(c) Compute the improvement ratio of the total log-
likelihood by

L(X™ /’{(m )= L( X /’{(u-n )
E= 5

L(X(H*I)‘/"[(nf]) )

(22)

(d) Increment ;5 — p+1 and iterate (a) through (c), if
the value £ is larger than a preset threshold.

3. Result

The final result of this training procedure is the
transformation matrix

2=l

Q= Q(I.‘) , (23)

and the GMM model is A" = {o(™, 4" AU}
IV. SPEAKER IDENTIFICATION

For speaker identification, a group of S speakers is
represented by a set of speaker models {I' ,T", ,.T’ . }.
Each I s
transformation matrix QS and a GMM parameter set

composed of a speaker dependent

, and

S

/15 = {w.\',i’:us,i’A-s',i}’i = 1""’ M’ where H > A

@,  represent mean, diagonal covariance, and weight of

the jth mixture of the sth speaker, respectively. Note that
each speaker has only one transformation matrix, but has
a GMM codebook of size M. Given an unknown test

utterance  X={x,,x,,.x, ..x, }, the most possible

A

speaker identity S is found by the following equation.

A >j (24)
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in which p(Q'x |4, ) is given in (1) with ¥ replaced
by Qx, -

Equation (24) indicates that before computing the log-
likelihood of each speaker GMM parameters /15, we

must transform the features by Q; .

V.EXPERIMENTS

A Chinese connected-digit database collected from 100
speakers was used in this experiment. Each speaker was
asked to provide 40 utterances in a recording session.
Five sessions had been recorded. Each set of 40
utterances includes 10 single digits and 30 connected
digit strings with 2 to 7 digits. The database was
partitioned into two parts. The first three sessions were
used for training while the other two sessions were used
for testing. To generate features, the speech signal was
sampled at a 10-kHz sampling rate, and weighted by
25.6-ms Hamming window shifted in every 12.8 ms. For
each speech frame, a 20-channel filterbank spectrum with
mel-scale frequency was obtained. Each speech spectral
vector was then transformed to a cepstral vector. Each
cepstral vector contained 12 cepstral coefficients.

There are several experiments conducted to demonstrate
our proposed method. The first part of experiments is to
examine the log-likelilhood on the training data for
different mixture numbers. The second part of
experiments is to compare the performance of our feature
transformed GMM with that of no transform GMM.
Diagonal covariance matrix is used for all probabilistic
models.

Table 1: The average log-likelihood of training data

model codebook size
type 8 16 32
Transform -33.68 -32.44 -31.43
No Transform| -33.26 -32.09 -31.08
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Figure 1. Comparison of log-likelihood on the
training data during each iteration step

1. Comparing the log-likelihood of transformed GMM
with that of no transform GMM.

Figure 1 shows the log-likelihood curves of training data
for each iteration step. The codebook size is 32. Both
methods become saturated very quickly, and the log-
likelihood of transformed GMM is larger than that of no
transformation. The reason is that the orthogonal
transformation makes the feature vectors less correlated
such that the diagonal GMM could be more fitted to the
feature distribution. Table 1 shows the final log-

likelihood of training data for different codebbook size.
We see again a large difference between the models.

2. Comparing the performance of the transformed GMM
with that of no transform GMM:

Table 2 shows error rates of different digital lengths and
codebook sizes for the two models. We can observe that
the error rates of the two models reduce as the digital
length or the codebook size increases. The mixture
number in GMM represents the number of acoustic
segments used for modeling speaker's characteristics. The
larger the mixture number is, the higher the spectral
resolution for speaker

The GMM parameters with no transformation of features
is used as a baseline. We observe that the GMM with the
feature transformation has a better performance than the
baseline for different utterance length and mixture size.
The experimental result shows a reduction in the error
rate by 42% when employing 7-digit utterances are used
for testing. This result is also consistent with the situation
shown by the log-likelihood of training data.

VI.CONCLUSION

An orthogonal transformation of speech features are
presented to reduce the correlation between feature
components. This transformation is jointly optimized
with GMM parameters in training phase. Experiments
show that the performance of transformed GMM is better
than that of the no transformation.

Table 2: The error rate (%) for the two models

model type no transform | transform | no transform | transform |no transform | transform
size. of mixture 8 8 16 16 32 32
no. of 1 424 34.7 29 232 21 19.4
digit 14.2 8.8 7 44 4.9 3.8
length 7.6 4.1 42 23 2.6 1.5
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