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ABSTRACT

Progress in robust automatic speech recognition
may benefit from a fuller account of the mechan-
isms and representations used by listeners in pro-
cessing distorted speech. This paper reports on a
number of studies which consider how recognisers
trained on clean speech can be adapted to cope with
a particular form of spectral distortion, namely re-
duction of clean speech to sine-wave replicas. Using
the Resource Management corpus, the first set of re-
cognition experiments confirm the high information
content of sine-wave replicas by demonstrating that
such tokens can be recognised at levels approaching
those for natural speech if matched conditions ap-
ply during training. Further recognition tests show
that sine-wave speech can be recognised using nat-
ural speech models if a spectral peak representation
is employed in concert with occluded speech recog-
nition techniques.

1. INTRODUCTION

Clean speech and speech with additive noise have
been the primary conditions employed in for most
ASR studies. Notwithstanding progress in recent
years, error rates remain significantly higher than
those exhibited by listeners (one and two orders of
magnitude greater for clean and noisy speech re-
spectively [15]). Yet listeners are remarkably ad-
ept at recognising many other forms of speech-like
stimuli, including those which have undergone vari-
ous forms of severe spectro-temporal distortion (e.g.
speech replicas employing only three time varying
sinusoids [18]; speech that has been reduced to the
output of two extremely narrow and widely spaced
band-pass filters [20]; spectral alternation [4]; spec-
tral smearing [1]; temporal desynchronisation across
spectral bands [11]; spectro-temporal [13] and tem-
poral attenuation [19] — see [8] for further examples).
Speech under these conditions can be immediately
intelligible to naive listeners who have had no pre-
vious exposure to the distorted speech. How then
do these untrained listeners employ their previous
experience of natural speech to interpret such heav-
ily distorted utterances? An answer to this question
is important not only for a better understanding of
speech perception, but also for the light it might cast
on robust representations and recognition strategies

for ASR.

In this paper, we focus on a particular form of
spectral distortion, namely reduction of clean speech
to sine-wave replicas [18], and report on a number
of ASR studies which address the question of how
recognisers trained on clean speech can be adapted
to cope with spectrally-reduced speech. We demon-
strate results using the Resource Management corpus
that suggest such distortions can be accommodated
within the evolving framework of occluded speech re-
cognition [12, 9].
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Figure 1: ¢Auditory spectrograms’ illustrating
the differences between natural speech, sine-wave
speech and modulated sine-wave speech for the
utterance, “Where were you a year ago?” Fre-
quency is an ERB-rate scale.

2. AUTOMATIC RECOGNITION OF
SINE-WAVE SPEECH

Sine-wave speech (SWS) is a spectrally reduced form
of speech produced by using time-varying sinusoids
to mimic the amplitude and frequency variation of
the first few formants of a natural utterance (see fig-
ure 1). Using only three such sinusoids, a stimulus
is produced which, although highly unnatural, can
nevertheless be easily intelligible to listeners with
no previous experience of the distortion [18]. This
phenomenon poses questions about the perceptual
organisation of speech and the cues necessary for
phonetic categorisation [17, 2]. Further, SWS intel-
ligibility can be significantly increased by applying
amplitude modulation, an effect most pronounced at



a modulation frequency of 100 Hz [7]. Two possible
explanations of this effect have been considered. The
first suggests that modulation acts as a cue to in-
crease the perceptual coherence of the acoustic sig-
nal. The alternative proposes that the modulation
side-bands make the stimulus more speech-like.

The experiments reported in this section examined
recognition performance of both unmodulated SWS
and SWS modulated at 100 and 200 Hz (MSWS).
SWS replicas were generated for each utterance in
the Resource Management (RM) task [16]. Amp-
litude and frequency trajectories of the first three
formants, necessary for sine-wave synthesis, were ex-
tracted using the Crowe formant tracker [10]. The
intelligibility of the SWS generated from this auto-
matically extracted formant data has been confirmed
in listening studies [2, 3].

Both natural and reduced speech corpora were
encoded using an auditory filterbank to produce a 64
channel rate-map representation [5] (as illustrated in
figure 1) and further transformed using a DCT res-
ulting in 13 ‘auditory cepstral’ coefficients in each 5
ms frame. HTK [21] was employed to construct a
triphone-based HMM speech recogniser for each of
the four stimulus conditions (natural speech, SWS,
100 Hz MSWS and 200 Hz MSWS) using cepstral
coeflicients along with their velocities and accelera-
tions.

Each of the four HMM systems were used to re-
cognise each of the 4 corresponding conditions ap-
plied to the test set (feb89 from RM) resulting in
a total of 16 recognition experiments, the results of
which are shown in table 1.

The main findings are:

i Spectrally-reduced speech can be recognised at
levels approaching that for natural speech if
matched models are used (diagonal entries in
table 1).

ii Recognition in unmatched conditions gives very
poor performance. By contrast, listeners typ-
ically attain word recognition rates of around
70% on sine-wave speech [2, 3, 17].

iii For models trained on natural speech, the ap-
plication of modulation leads to a small in-
crease in the accuracy of SWS recognition (with
a slightly bigger effect at 100Hz than at 200Hz).
This supports the findings of Carrell and Opie
[7] in that the small increase in the naturalness
of MSWS, as demonstrated by the ASR res-
ults, is unlikely to fully account for the greatly
increased intelligibility of MSWS over SWS.

3. SPECTRAL PEAKS

In the previous experiment, high SWS recognition
accuracies were achieved only for models trained on

Test Condition

Training | Natural | SWS | 100 Hz | 200 Hz
Natural 90.8 4.9 9.6 8.3
SWS 10.7 80.5 83.5 73.2

100 Hz 24.3 70.8 80.6 76.4
200 Hz 15.0 40.7 75.0 78.3

Table 1: Word recognition accuracies for natural
and SWS train/test conditions.

SWS data. Listeners do not require such training and
hence do not appear to explicitly ‘model’ the novel
signal, but instead are able to directly use their prior
expectations of natural speech. What does this ef-
fortless mapping between SWS and natural speech
say about the auditory representations and associ-
ated recognition processes employed?

Like most other ASR systems, the study described
in section 2 used a cepstral representation of speech.
Whilst such a basis is useful reducing the number of
parameters to be estimated during training, it has
the drawback of all non-spectral representations in
suffering severe distortion under operations (such as
band-pass filtering and sine-wave speech synthesis)
that selectively disrupt restricted spectral regions.
Human speech recognition copes with these band-
limited distortions by making full use of the natural
redundancy of speech (precisely the correlations in
the feature vector that cepstral coding minimises).
Whole-spectrum cepstral coding is unlikely to form
an adequate basis for speech perception in listeners.

Vowel perception studies have demonstrated the
importance of spectral peak locations relative to spec-
tral valleys (e.g. [6]), and of course the resistance of
such regions to occlusion by competing noise sources
confers a degree of robustness. Could a peak-based
account also explain the ease of SWS recognition?
Examination of auditory spectrograms of SWS utter-
ances (see figure 1) suggests that although sine-wave
synthesis heavily distorts the spectral profile (form-
ant bandwidths are effectively narrowed and the har-
monic structure is lost), the relative heights and fre-
quencies of the major spectral peaks are preserved.

A second set of experiments was conducted to
determine whether this peak-invariance can be ex-
ploited to recognise spectrally-reduced speech from
models trained on natural speech.

3.1. Method

Feature vectors were derived directly from 64 channel
auditory rate-maps. However, rather than using the
full 64 point profile of each frame of training data,
spectral peaks alone were used i.e. the mean feature
vector u for each state of each HMM was computed
from the training set according to:

SN @i,.peak(i, 5)
>N | peak(i, )
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LN 1 Tij > Tj -1 & Tij > Tqj+1
peak(i, j) = { 0 otherwise
where z; ; is the jth channel of the ith of N training
vectors. Variances were computed similarly. Dur-
ing testing, data was treated as being unknown ex-
cept at the locations of the peaks, and missing data

techniques [9] were applied to compute observation
likelihoods for each HMM state.

3.2. Results and Discussion

Recognition performance for natural speech using
peaks-only and whole-spectrum approaches is sum-
marised in table 2.
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Figure 2: Comparison of model means (left) and
variances (right) when training on either the
whole profile or peaks only. Graphs represent
averages over all HMM triphone states.
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Training Test Condition
Condition Whole Spectrum|  Peaks
Whole Spectrum 68.1 74.9
Peaks — 75.7

Table 2: Natural speech recognition accuracy for
whole-spectrum and peaks-only representations.

These results indicate that irrespective of how the
models are trained, a significant improvement (about
8%) is gained if spectral peaks alone are used dur-
ing recognition. This can be explained by the ob-
servation that whilst spectral peaks are not entirely
independent, they suffer less from the inherent re-
dundancy of processing in overlapping filter chan-
nels. This relative independence makes the spectral-
peak representation better matched to the variance-
only feature vectors of the HMMs employed.

A further small improvement is gained for models
trained on peaks. This is obtained in spite of the fact
that only a fraction of the training data is available
(there are on average approximately 8 peaks per each
64 channel frame of test data). Two factors may con-
tribute to this improvement. First, since harmonics
in the F1 region are resolved by the narrow filters
of the auditory representation, use of the entire pro-
file leads to large variances. These arise from the
movement of harmonic peaks due to FO variation
across tokens. The peaks themselves trace out the
true shape of F1 and thus overcome variability due
to different F0s. This effect is illustrated in figure 2
which compares feature vector variances for whole-
spectrum and peaks-only models. Second, training
on the full profile results in models that systematic-
ally underestimate mean peak values. Again, this ef-
fect is especially apparent in the first formant region
where harmonic peaks are averaged with harmonic
dips (see figure 3). With more training data, leading
to better estimation of spectral peaks, recognition
accuracy may be further improved.

Turning now to recognition of SWS, the first row
of table 3 demonstrates performance which is signific-
antly improved over that obtained using the cepstral
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Figure 3: Models trained on the entire spectral

profile underestimate typical spectral peak values
in the F1 region.

representation. Thus, the combination of a spectral
peak representation and application of missing data
techniques allows SWS to be recognised with mod-
els trained on natural speech, with a relative per-
formance similar to that obtained by listeners [3].
Furthermore, the technique demonstrates a certain
degree of robustness to missing data: even when en-
tire sinusoids are removed, resulting in a 2 ‘form-
ant’ condition, significant recognition was still pos-
sible. Unsurprisingly, single sinusoid recognition ac-
curacy dropped to chance levels. It appears that
whereas one formant region alone does little to con-
strain recognition, significant performance is possible
when two are combined. This effect echoes studies of
filtered speech intelligibility [20, 14] in which intel-
ligibility increases in a supra-additive fashion when
widely separated frequency bands are combined. The
relative improvement in recognition performance as
the number of sinusoids present increases is also com-
parable with human performance as demonstrated in
previous SWS listening studies [17].

4. CONCLUSIONS

These studies demonstrate the following:
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Table 3: Recognition results for systems trained

on
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natural speech and employing missing data
Word accuracy figures are shown
recognition of natural speech and SWS with

either 1, 2 or 3 sinusoids.

i Although spectral reduction to sine-wave speech
represents a severe distortion of natural tokens,
the information content of the signal is still
sufficiently high to afford good recognition in
matched training conditions.

ii Poor performance in unmatched conditions sug-
gests that cepstral coding techniques are inap-
propriate for dealing with drastic alterations
to the shape of the spectral profile caused by
spectral reduction.

iii Unmatched conditions can be successfully mod-

elled by applying missing data techniques in
conjunction with a spectral peak representa-
tion. Performance on reduced speech relative
to natural speech is quantitatively similar to
that attained by listeners.

Spectral reductions are just one form of distortion

which listeners are capable of handling. A consider-
ation of other modifications will be required for an
adequate model of speech perception, which in turn
promises to benefit robust ASR.
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