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ABSTRACT

A new method to improve the accuracy of Autoregres-
sive Hidden Markov Model (AR-HMM) based recogni-
tion systems is proposed. The technique uses the bilin-
ear transform to warp the frequency scale of the observa-
tion vectors, hence it uses a better perceptual measure to
compare the observation vectors to the trained models.
Results presented for the E-set letters from the ISOLET
database and the first speaker dependent task of the Re-
source Management (RM) database show that this tech-
nique improves recognition accuracy considerably. How-
ever, in the case of the RM system, the recognition re-
sults still fall short of those obtained from a similar mel-
frequency cepstral (MFCC) based system without delta
parameters. Reasons for the inferior performance of the
AR-HMM system are proposed and future research direc-
tions are suggested. The models built for the RM task
are incorporated into an existing enhancement algorithm
to form a large vocabulary speaker dependent enhance-
ment system. Preliminary results are presented for this
system.

1. INTRODUCTION AND MOTIVATION

The motivation for this work comes from the desire to
extend previous enhancement systems [1], [2] to a vocab-
ulary independent system. These techniques estimate the
clean speech and noise models within an autoregressive
HMM framework [3]. AR-HMMs are used to model the
speech and noise and a combined model is built and used
to recognise the noisy speech. A new noise model is es-
timated according to the alignment and the process is
repeated until the total likelihood converges to a max-
imum. Thus enhancement and recognition in unknown
noise conditions is possible.

Autoregressive HMMs are used because they segment
the speech into clusters of signals with similar autocorre-
lation parameters. These are used to form Wiener filters
to enhance the speech. The task is made easier because
for additive noise, the noisy speech observation vector is
a linear combination of the speech and noise vectors [4].

However, recognition systems based on AR-HMMs
have been neglected in recent years due to their inferior
performance compared to MFCC and perceptual linear
predictive (PLP) based systems. Yet it is less prefer-
able to use the MFCC and PLP parameterisations for en-
hancement due to their inherent non-linearities. It would
be desirable however to incorporate the advantages of
these parameterisations into the AR framework.

AR-HMMs as described in [3] effectively use a linear
frequency scale to compare the spectrum of an observa-
tion to that of a trained model. Yet is is well known
[5] that it is more appropriate to use a warped frequency
scale such as the Mel or Bark scale since this corresponds

to the frequency resolution of humans. Non-linear fre-
quency scales are used by both MFCC and PLP systems.
Therefore it seems reasonable to investigate an AR-HMM
system using a non-linear frequency scale.

The bilinear transform [6] has been used in the past
to improve the performance of linear prediction coding
systems [7]. The procedure transforms a time sequence
to a new sequence with a warped spectrum. By adjusting
the so-called warping factor, the degree of warping can be
made to be a very good approximation to the Bark scale.
The work in this paper applies the bilinear transform to
an AR-HMM system and shows that it can benefit from
the use of a warped frequency scale.

A very nice feature of the bilinear transform is that
it can be reversed by applying the same transform with
the negative of the warping factor. Thus the use of this
technique to improve AR-HMM recognition performance
will not interfere with the enhancement part of the sys-
tem since the feature vector can be “unwarped” after
recognition in preparation for enhancement.

2. EXPERIMENTAL SETUP

Experiments were conducted using the ISOLET data-
base (collected for use in [8]) and the Resource Manage-
ment (RM) database [9].

The ISOLET database contains two isolated tokens
of each letter of the alphabet for 150 American English
speakers, 75 male and 75 female. 120 speakers were used
for training and 30 for testing. The speech is sampled at
16kHz. Experiments were performed using the English
E—Set letters ({LLB777 LLC777 LLD777 LLE777 LLG777 LLP777 LLT?? and
“V”}) only.

The implementation of the AR-HMM system was as
follows. Ome 13 state HMM was trained for each let-
ter. The order of the AR models was 20. Experiments
were conducted using various numbers of mixture compo-
nents and with and without the frequency warping. The
frequency warping was implemented in the frequency do-
main according to [7].

A baseline MFCC-based system was trained to allow
a comparison. This also had one 13 state HMM for each
letter with 12 MFCC coefficients and one energy coef-
ficient per state. Recognition was performed with and
without the 13 delta coefficients and using various num-
bers of mixture components.

The RM database is suitable for large vocabulary con-
tinuous speech recognition experiments. The speaker de-
pendent part of this database was used for the experi-
ments described in this paper. This consists of 600 train-
ing and 100 test sentences. The results presented here
are for speaker “bef0_3”. Again the speech is sampled at
16kHz.

Multiple mixture 3 state triphone-clustered HMMs



were trained for this task. Apart from the number of
states, the parameterisation for the AR-HMMs and base-
line MFCC-HMMs was identical to that used in the ISO-
LET experiments.

The optimal method of clustering the triphones in the
AR-HMM system is still an area of investigation. It was
found that improved results could be obtained by the use
of a MFCC-based system to dictate the clusters.

3. RECOGNITION EXPERIMENTS

3.1. Determination of the Warping Factor

In order to determine the warping factor for the given
sampling rate, the recognition accuracy of the ISOLET
system was investigated for various warping factors. These
results are plotted in Figure 1 (with a 4th-order polyno-
mial fitted to the points). They indicate that the exact
choice of warping factor is not critical and that a factor
in the range 0.5 - 0.6 will produce good results.

Smith [10] has presented a formula to determine the
optimal warping factor for a given sampling frequency.
This formula is reproduced here as Equation 1.
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Here a is the warping factor and f. is the sampling fre-
quency measured in kHz. For the given sampling fre-
quency of 16kHz, Equation 1 gives a warping factor of
0.57. This corresponds well with the minimum of the
graph in Figure 1 and was the chosen warping factor for
the experiments. Figure 2 shows the approximation of
the bilinear transform to the Bark scale for this warping
factor.
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Figure 1: Recognition Error Rates for Various Warping

Factors (ISOLET Data)

3.2. ISOLET Database

Recognition results for both the AR-based and MFCC-
based systems on the ISOLET database are shown in
Table 1. The ‘% Error’ figure in this table was calculated
using the following formula.

D+S+1

% Error = - 100% (2)
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Figure 2: Bilinear Transform Approximation to the Bark
Scale

Model Number % FError
Mixture (D,s.I)
Components
AR no warping 1 32.3 (0,154,1)
2 27.1 (0,130,0)
3 28.3 (0,136,0)
AR with warping 1 24.0 (0,114,1)
2 20.6 (0,99,0)
3 15.8 (0,76,0)
MFCC no deltas 1 21.6 (0,67,0)
2 21.0 (0,50,1)
3 17.1 (0,82,0)
MFCC with deltas 1 13.9 (0,67,0)
2 10.6 (0,50,1)
3 7.5 (0,36,0)

Table 1: ISOLET E-Set Recognition Results

Here D, I and S represent the number of deletions, inser-
tions and substitutions respectively and N is the number
of letters in the test set.

It can be seen that warping the frequency scale de-
creases the recognition error of the AR-HMM system
quite considerably. In fact for this task the error rate
is comparable to the MFCC-based system without delta
parameters. It would appear then that that in this do-
main the information in the delta parameters is the now
main information missing from this modified AR-HMM
system.

3.3. RM Database

Recognition results for both the AR-HMM and MFCC-
based systems on the RM Database are shown in Table
2. It can been seen from these results that again recog-
nition has been improved considerably using the bilinear
transform. However, for this task, the performance of the
AR-HMM systems still fall far short of the performance
achievable using a MFCC-based system. [t appears then
that for this large vocabulary system, while the use of a
perceptual frequency scale does improve recognition, it



Model Number % FError
Mixture (D,s.I)
Components
AR no warping 4 37.8 (48,204,57)
5 32.6 (45,168,54)
AR with warping 4 24.0 (39,129,28)
5 20.4 (34,112,21)
MFCC no deltas 4 11.1 (12,44,35)
5 9.8 (12,40,28)
MFCC with deltas 4 6.9 (12,23,22)
5 5.1 (3,20,19)

Table 2: RM Recognition Results - speaker BEF0_3

does not completely explain the difference between the
information provided by the non-warped AR-HMM sys-
tem and the MFCC-no-delta system.

3.4. Discussion

One variation between the MFCC-no-delta and AR-HMM
system 1s the lack of energy information in the AR-HMM
system. To investigate the effect of this, energy infor-
mation was incorporated into the AR-HMM framework
along the lines of [11]. The likelihood expression for an
observation given the current state was modified by the
addition of a term describing the probability of the state
having a given energy. This extra term is scaled by an
empirically chosen factor. It was found that some slight
gains in recognition accuracy of the order of 1-2% ab-
solute could be made by the use of this technique which
tended to mostly correct substitution errors. Hence there
is still an unaccounted for difference between the two sys-
tems.

The major source of deviation between the two sys-
tems is caused by the differing distortion measures used.
Both systems essentially use spectral difference measures
to compare an utterance to trained templates [12]. How-
ever the MFCC-based system uses a more flexible distor-
tion measure. While the AR-HMM system treats errors
in any part of the spectrum equally, the MFCC-based
system effectively weights the error in each part of the
spectrum by the (trained) variance of each estimate.

It should be noted that this is done at the expense
of twice the number of system parameters. (i.e. the
MFCC-based system has both a mean and a variance
for each state whereas the AR-HMM system has a mean
and an implicit variance). However as shown in Table 3
increasing the number of AR-HMM system parameters
by increasing the number of mixture components does
not solve this problem. This latter result was also ob-
served in [11] on a simpler task and essentially the same
conclusion was reached.

Therefore it seems reasonable that future directions
of research should address improving the distortion mea-
sure of the AR-HMM system and somehow incorporating
confidence into the estimate. Other areas of investigation
include improving clustering techniques and energy in-
corporation. Clearly the superior performance of MFCC-
based systems cannot be ignored and it is hoped that a
careful study of their exact workings will show further
ways of improving AR-HMM systems, as it already has
done in the case of introducing the frequency warping.

Model Number % FError
Mixture (D,s.I)
Components
AR with warping 5 20.4 (34,112,21)
6 20.1 (39,101,24)
7 20.3 (39,102,25)

Table 3: RM Recognition Results - speaker BEF0_3 -
Increasing Mixture Components

4. ENHANCEMENT EXPERIMENTS

The ultimate aim of this work was the construction of a
vocabulary independent enhancement system along the
lines of [2]. This system is able to perform enhancement
in unknown noise conditions. Previously it had only been
tested on a small vocabulary system.

Gaussian noise at approximately 6dB signal-to-noise
ratio was added to test utterances from the RM database.
These were then enhanced using the method of [2] and
the models developed in Section 3.3. Some initial obser-
vations are described below.

The algorithm appears to be reasonably sensitive to
initialisation of the noise statistics. In [2], the noise
statistics were initialised using all the frames of the ut-
terance to be enhanced. The nature of the data in [2]
(isolated digits) meant that proportionally more frames
were noise than in the experiments in this paper and
thus the initial noise estimate was superior. Since the
enhancement algorithm only converges to a likelihood lo-
cal maximum, a good initial estimate is required. Thus it
was found that enhancement could be improved by ini-
tialising the noise statistics from either the first frame
(this makes the assumption though that the utterance is
preceded by speech-free section) or the frame with the
least power.

A further observation was that the system could per-
form quite effective enhancement. Figures 3, 4 and 5
show the clean, noisy and enhanced spectrums for a typ-
ical utterance.

5. CONCLUSIONS

It has been shown that the accuracy of an AR-HMM
based recognition system can be improved considerably
by the use of the bilinear transform to warp the frequency
scale. Results are presented for both a small vocabulary
system speaker-independent system and a large vocabu-
lary speaker-dependent system. For the small vocabulary
system, the recognition results for the warped AR-HMM
system were comparable with those of a MFCC-based
system without delta parameters. This was not the case
for the large vocabulary system. It was reasoned that
this was due to the difference in distortion measures be-
tween the two systems. Thus the improvement of the
AR-HMM distortion measure would seem to be the most
obvious path for future recognition experiments although
this is by no means the only path.

The models built for the large vocabulary recognition
system were incorporated into an existing enhancement
algorithm to form a large vocabulary speaker- dependent
enhancement system.
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Figure 3: Clean Speech
A0775501.WAV]

(“Add Yankee”)
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Figure 4: Noisy Speech (“Add Yankee”) with 6dB Gaus-

sian Noise [sound A0775502. WAV]
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Figure 5: Enhanced Speech (“Add Yankee”) from 6dB

Gaussian Noisy Speech [sound A0775503.WAV]
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