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ABSTRACT

In this paper we describe experiments with the acous-
tic front{end of our large vocabulary speech recognition
system. In particular, two aspects are studied: 1) linear
transforms for feature extraction and 2) the modelling
of the emission probabilities. Experiments are reported
on a 5000{word task of the ARPA Wall Street Journal
database.
For the linear transforms our main results are:

� Filter{bank coe�cients yield a word error rate of
9.3%.

� A cepstral decorrelation reduces the error rate from
9.3% to 8.0%.

� By applying a linear discriminant analysis (LDA)
a further reduction in the error rate from 8.0% to
7.1% is obtained.

� Recognition results are similar for a LDA applied to
�lter{bank outputs and to cepstral coe�cients.

The experiments with density modelling gave the follow-
ing results:

� Gaussian and Laplacian densities yield similar error
rates.

� One single vector of variances or absolute de-
viations outperforms density{speci�c or mixture{
speci�c vectors.

1. INTRODUCTION

This paper is about the optimization of the acoustic
front{end of our large vocabulary speech recognition sys-
tem. In particular, we study two aspects: 1) the use of
linear transforms for feature extraction and 2) the mod-
elling of emission probabilities.

Linear transforms for feature extraction are a subject of
intense research interest. In particular, linear discrimi-
nant analysis (LDA) [8] has been shown to improve recog-
nition performance on small [7, 11] and large vocabulary
[1, 2] recognition tasks. A disadvantage of LDA is its
poor performance in case of a mismatch in training and
testing conditions [6]. Cepstral decorrelation of �lter{
bank outputs [4] does not su�er much from this drawback
since the transformation matrix is data{independent. In
this paper we compare the LDA and the cepstral decor-
relation in the framework of large vocabulary continuous
speech recognition. A comparison for a small vocabulary
task and telephone speech was carried out in [6].

The modelling of emission probabilities in our recogni-
tion system is based on continuous mixture densities [9].
This paper compares Gaussian and Laplacian component
densities and reports on experiments with a pooled, a
mixture{ and a density{speci�c vector of absolute devi-
ations.

The paper is organized as follows. Section 2 describes the
acoustic front{end of the recognizer. Section 3 is on the
acoustic modelling. Experimental results on the ARPA
Wall Street Journal database are reported in Section 4.
Conclusions are drawn in Section 5.

2. ACOUSTIC FRONT{END

2.1. Critical band �lter bank

The speech signal is sampled at 16 kHz. Every 10 ms,
a Hamming window is applied to preemphasised 25{ms
segments and a 1024{point fast Fourier transform (FFT)
is performed. The magnitude spectrum is warped ac-
cording to the mel scale [12]:

Mel(f) = 2595 log
10
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The obtained spectral magnitudes are integrated within
20 triangular �lters arranged on the mel{frequency scale.
The mid{frequency of �lter n is n=2�270:48 and the band-
width is 270.48 for all �lters. The �lter output is the log-
arithm of the sum of the weighted spectral magnitudes.
To suppress channel distortions, a mean normalisation is
carried out for each sentence. This yields 20 normalized
spectral intensities which form the 'raw' acoustic vector.
In the following we describe how di�erent acoustic vec-
tors used for recognition are calculated from the 'raw'
acoustic vector.

Table 1: Number of coe�cients, �rst{ and second{order
derivatives and resulting dimension of the acoustic vector
for �lter bank and cepstrum coe�cients.

coe�. � coe�. �� coe�. dim.

�lter bank 21 21 1 (energy) 43
cepstrum 16 16 1 (c0) 33

Table 2: Dimension of the acoustic vector before and
after the multiplication with the LDA matrix.

before LDA after LDA

�lter bank 3 � 43 = 129 43
cepstrum 3 � 33 = 99 33



Table 3: E�ects of linear transforms on the word error rate on a 5000{word task (WSJ0 Nov.`92 development/evaluation
set: 10/8 speakers, 410/330 sentences, 6779/5353 spoken words; bigram language model with a perplexity of PPbi = 107;
deletions (DEL), insertions (INS) and word error rate (WER) are given in percent).

LDA #Dens. Nov.`92 development set Nov.`92 evaluation set both sets

(m+f) states (m+f) DEL{ INS WER states (m+f) DEL { INS WER WER

�lter bank no 64k+57k 5675 + 4300 2.1 { 1.0 9.9 4911+ 5545 1.4 { 1.1 8.5 9.3
cepstrum " 61k+58k 10363 + 12944 1.6 { 0.7 8.3 17356 + 8100 1.0 { 0.9 7.6 8.0
�lter bank yes 74k+72k 2860 + 5496 1.8 { 0.5 7.4 6438+ 6820 1.1 { 0.8 6.5 7.0
cepstrum " 75k+86k 3959 + 2870 1.6 { 0.6 7.4 3375+ 3457 0.9 { 0.9 6.7 7.1

2.2. Filter{bank Coe�cients

For each 'raw' acoustic vector the average of the com-
ponents is calculated, subtracted from each component
and included into the vector as an approximation to the
frame energy. A vector of �lter{bank coe�cients with a
dimension of 21 is obtained.

2.3. Cepstrum Coe�cients

Due to overlapping �lters, the components of the 'raw'
acoustic vector are correlated and the covariance matrix
has approximately Toeplitz form. Therefore a decorre-
lation by a discrete cosine transform [4] is performed.
M = 16 mel{frequency cepstral coe�cients (MFCC) cm
are computed from N = 20 components of the 'raw'
acoustic vector fn by

cm =

NX
n=1

fn cos

�
�m(n� 0:5)

N

�
; 0 � m < M:

The coe�cients cm form a vector of cepstrum coe�cients.

2.4. Spectral Dynamic Features

Temporal derivatives are calculated by two alternative
methods:

� Time di�erences are calculated as described in [11].

� Linear regression coe�cients are calculated over
a window covering 5 vectors as described in [10,
pp. 194]. This method leads to smoother estimates
of the derivatives than the direct di�erence opera-
tion.

Table 1 contains the number of derivatives and the re-
sulting dimension of the acoustic vector for the cepstrum
and the �lter{bank coe�cients.

2.5. Linear Discriminant Analysis

We apply linear discriminant analysis [5, 8] to acoustic
vectors containing either cepstrum or �lter{bank coe�-
cients. In both cases, 3 successive vectors from times
t�1, t and t+1 which include spectral dynamic features
are adjoined to form a large input vector [7]. A gender{
independent transformation matrix is employed to reduce
the dimension of the acoustic vector. The LDA classes
are de�ned as states. The dimensions of the acoustic
vector before and after the multiplication with the LDA
matrix are shown in Table 2.

2.6. Front{End Con�gurations

So far, we have described three linear transforms for
feature extraction, namely a cepstral decorrelation, the
inclusion of spectral dynamic features and a linear dis-
criminant analysis. Figure 1 shows how the transforms
are used in four alternative con�gurations of the acoustic
front{end.

ACOUSTIC VECTOR FOR RECOGNITION

’RAW’ ACOUSTIC VECTOR

Dyn Fea

LDA

DCT

Dyn Fea

DCT

Dyn Fea

LDA

Dyn Fea

+ E+ E
16 16 21 21

16/16/1 16/16/1 21/21/1 21/21/1
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Figure 1: Four di�erent con�gurations of the acoustic
front{end based on cepstral decorrelation (DCT), in-
clusion of frame energy (+E), inclusion of spectral dy-
namic features (DynFea) and linear discriminant analysis
(LDA).

3. ACOUSTIC MODELLING

The emission probabilities attached to each state are
modelled by continuous mixture densities. The param-
eters of the emission probabilities are trained using the
maximum likelihood criterion in combination with the
Viterbi approximation, so only the best state sequence
is used. For the calculation of emission probabilities the
sum over all component densities of a mixture is approx-
imated by the maximum [9]. The transition probabili-
ties are set to a constant value which depends only on
the type of the transition. Generalised word{internal tri-
phones are derived by a decision tree method [3].

We use either Gaussian or Laplacian models with a di-
agonal covariance or deviation matrix that can be ei-
ther pooled over all states, mixture{speci�c or density{
speci�c.

4. EXPERIMENTAL RESULTS

All experiments were carried out on the ARPA Wall
Street Journal (WSJ) corpus. Training was done on



Table 4: Recognition results for di�erent spectral dynamic features on WSJ0 Nov.`92 test sets (bigram).

Dynamic #Dens. Nov.`92 development set Nov.`92 evaluation set both sets

features (m+f) states (m+f) DEL { INS WER states (m+f) DEL { INS WER WER

linear regression 78k+87k 3001+ 4916 1.8 { 0.7 8.0 4916+ 3911 1.2 { 1.0 7.5 7.7
di�erences 78k+78k 4347+ 5141 1.8 { 0.8 7.8 2914+ 3451 1.1 { 1.4 7.7 7.8
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Figure 2: Correlations between the components of the
acoustic vector: �lter{bank coe�cients (top) and cep-
strum coe�cients (bottom).

the WSJ0 84{speaker corpus and testing on the WSJ0
Nov. `92 development and evaluation data. We used
gender{dependent models. The size of the vocabulary
was 5000 words. The number of tied states including
silence was 2001. Recognition was done with a bigram
model with a perplexity of 107 on the development and
evaluation data.

All tables in this section show the word error rates on the
development and evaluation set and the resulting error
rates for both sets. In addition, the tables contain the
number of component densities and the average number
of active states during recognition per gender.

4.1. Linear Transforms

Table 3 summarizes the word error rates obtained with
di�erent con�gurations of the acoustic front{end as de-
picted in Figure 1. The experiments were done with
Laplacian component densities, one single vector of ab-
solute deviations and linear regression coe�cients as dy-
namic features.

Using �lter{bank coe�cients as described in Section
2.2. for recognition yielded a word error rate of 9.3% on
both test sets. A cepstral decorrelation as described in
Section 2.3. reduced the error rate by 14% relative from
9.3% to 8.0%.

Figure 2 shows the correlation between the components
of the acoustic vector for �lter bank and cepstrum coef-
�cients. For the �lter{bank vector the �gure indicates
signi�cant correlations. However, the correlations be-
tween the original �lter{bank coe�cients (components
1 to 21) and the linear regression coe�cients (compo-
nents 22 to 43) are relatively small. Therefore it appears
to be reasonable to apply the cepstral decorrelation only
to the original �lter{bank coe�cients and not to spec-
tral dynamic features. Figure 2 shows that the cepstral
decorrelation leads to an acoustic vector without strong
correlations between its components.

However, applying a LDA as outlined in Section 2.5. to
the cepstrum coe�cients provided a further reduction of
the word error rate from 8.0% to 7.1%. A similar error
rate of 7.0% was obtained by applying the LDA to �lter{
bank coe�cients. This result is in accordance with the
invariance of the LDA criterion [5, p. 120] under linear
transforms.

In summary, we found that the LDA method performed
better than a cepstral decorrelation. Filter{bank coe�-
cients yielded the highest error rates. This was also the
case for mixture{speci�c deviation vectors for which the
error rates given in Table 3 were increased by approxi-
mately 10% relative. In the following we will discuss this
result.

The LDA method and the cepstral decorrelation both
perform an approximative decorrelation: One step of the
LDA method is a whitening transform of the within{class
covariance matrix. The cepstral decorrelation results in
a diagonalization of the covariance matrix of all acoustic
vectors regardless of their class assignments. Since both
kinds of decorrelation are bene�cial for the subsequent
acoustic modelling where diagonal covariance or devia-
tion matrices are used, the error rates are decreased.

The reason why the LDA outperforms the cepstral decor-



Table 5: E�ects of density modelling on the word error rates on WSJ0 Nov.`92 test sets (bigram).

Density Deviation/ #Dens. Nov.`92 development set Nov.`92 evaluation set both sets

type variance (m+f) states (m+f) DEL { INS WER states (m+f) DEL{ INS WER WER

Laplacian pooled 75k+86k 3959+ 2870 1.6 { 0.6 7.4 3375 + 3457 0.9 { 0.9 6.7 7.1
" per mix. 61k+58k 3001+ 4916 1.8 { 0.7 8.0 4916 + 3911 1.2 { 1.0 7.5 7.7
" per dens. 59k+59k 3451+ 8124 1.6 { 0.9 8.1 3793 + 4147 0.9 { 0.9 6.9 7.6

Gaussian pooled 68k+82k 9915+ 6720 1.6 { 0.7 7.3 2744 + 5186 1.0 { 0.9 6.4 6.9

relation seems to be that the LDA method performs an
optimal feature reduction using a criterion of class sep-
arability. Thus the LDA method can concentrate the
relevant information for classi�cation that is contained
in a large input vector in a vector of a low dimension [6].

Another experiment was carried out to check the e�ect of
di�erent spectral dynamic features, namely linear regres-
sion coe�cients and time di�erences, on the error rate.
In this experiment, we applied LDA to cepstrum coe�-
cients and we used a mixture{speci�c vector of absolute
deviations. As Table 4 shows, the word error rates for
both methods do not di�er signi�cantly.

4.2. Density Modelling

In the experiments described in this section we applied
LDA to the cepstrum and we used linear regression coef-
�cients as dynamic features.

Table 5 illustrates the e�ects of deviation modelling on
the recognition performance for Laplacian density mod-
els. A single vector of absolute deviations pooled over
all states yielded the lowest word error rate of 7.1% on
both test sets. Mixture{ and density{speci�c deviation
vectors increased the error rate by less than 10% relative.

The performance of Gaussian and Laplacian densities is
also compared in Table 5. The comparison was done for
the case of one single vector of deviations or variances
pooled over all states. As Table 5 indicates, the error rate
for both test sets using Gaussian models was 6.9%. An
error rate of 7.1% was obtained with Laplacian models.
These results show that Gaussian and Laplacian models
perform comparable.

5. CONCLUSIONS

We compared a cepstral decorrelation and a linear dis-
criminant analysis in the framework of large vocabu-
lary continuous speech recognition. Both transforms de-
creased the word error rates signi�cantly. However, the
cepstral decorrelation does not provide the recognition
performance of the linear discriminant analysis.

In addition, we described experiments with density mod-
elling. In our recognition system which uses diagonal
covariance or deviation matrices and Viterbi training,
one single vector of variances or deviations performed
better than mixture{ or density{speci�c vectors. The er-
ror rates obtained with Gaussian and Laplacian densities
were comparable.
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