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1 ABSTRACT

A new strategy for speaker adaptation is described
that is based on: (1) pre-clustering all the speakers in
the training set acoustically into clusters; (2) for each
speaker cluster, a system is built using the data from
the speakers who belong to the cluster; (3) when a test
speaker’s data is available, we find a subset of these
clusters, closest to the test speaker; (4) we transform
each of the selected clusters to bring it closer to the
test speaker’s acoustic space; (5) we build a speaker-
adapted model using transformed cluster models.

This method solves the problem of excessive stor-
age for the training speaker models(!], as it is relatively
inexpensive to store a model for each cluster. Also as
each cluster contains a number of speakers, parame-
ters of the models for each cluster can be robustly
estimated. The algorithm has been evaluated on a
large vocabulary system and comparied to existing al-
gorithms. The imporvement over existing algorithms
such as MLLR!? is statistically significant.

2 INTRODUCTION

In a previous paperll!, a speaker adaptation scheme
was described based on the fact that a speech training
corpus contains a number of training speakers, some of
whom are closer, acoustically, to the test speaker, than
others. Therefore, given a test speaker, if the acoustic
models are re-estimated from a subset of the training
speakers who are acoustically close to the test speaker,
the system should be a better match to the test data of
the speaker. A further improvement can be obtained
if the acoustic space of each of these selected speakers
is transformed to come closer to the test speaker.
Given a test speaker, the adaptation procedure
used in [1] is: (1) find a subset of speakers from the
training corpus, who are acoustically close to the test
speaker; (2) transform the data of each of these speak-
ers to bring it closer to the test speaker, and (3) use

only the (transformed) data from these selected speak-
ers, rather than the complete training corpus, to re-
estimate the model (Gaussian) parameters. This scheme
was shown to produce better speaker adaptation per-
formance than other algorithms, for example MLLR[?!,
or MAP adaptation[®, when only a small amount of
adaptation data was available.

The implementation of [1] used the transformed
training data of each selected training speaker to re-
estimate the system parameters; this required the en-
tire training corpus to be available on-line for the adap-
tation process, and is not practical in many situations.
This problem can be circumvented if a model is stored
for each of the training speakers, and the transforma-
tion (to bring the training speaker closer to the test
speaker) is applied to the model. The transformed
models are then combined to produce the speaker-
adapted model. However, due to the large number
of training speakers, storing the models of each train-
ing speaker would require a prohibitively large amount
of storage. Also, we may not have sufficient data from
each training speaker to robustly estimate the parame-
ters of the speaker-dependent model for the training
speaker.

To solve this problem and retain the advantages of
the method in [1], we present a new idea in this paper,
which is based on pre-clustering the training speakers
acoustically into clusters. The speaker pre-clustering
can also be viewed as a partitioning the acoustic space
in terms of speakers. For each speaker cluster, an
acoustic system (called a “cluster-dependent system”)
1s trained using speech data from the speakers who
belong to the cluster. When a test speaker’s data is
available, we rank these cluster-dependent systems ac-
cording to the distances between the test speaker and
each cluster, and a subset of these clusters, acousti-
cally closest to the test speaker, is chosen. Then the
model for each of the selected clusters is transformed!?]
to bring the model closer to the test speaker’s acoustic



space. Finally these adapted cluster models are com-
bined to form a speaker adapted system. Hence, com-
pared to [1], we now choose clusters that are acousti-
cally close to the test speaker, rather than individual
training speakers.

This method solves the problem of excessive stor-
age for the training speaker models, because the num-
ber of clusters is far fewer than the number of training
speakers, and it is relatively inexpensive to store a
model for each cluster. Also as each cluster contains a
number of speakers, we have enough data to robustly
estimate the parameters of the model for the cluster.

The following problems are relevant in the context
of this adaptation strategy. (1) how should we pre-
cluster the training speakers; (2) what model should
we use to describe a cluster; (3) given a test speaker,
how should we select the clusters that are acoustically
closest to the test speaker; (4) finally, how should we
build a speaker adapted model from the cluster mod-
els. We will describe a number of experiments that
attempt to solve these problems along with the results
that were obtained, in the following sections.

3 PRE-CLUSTERING TRAINING
SPEAKERS

Pre-clustering training speakers is a problem related to
finding similarities across different speakers. Firstly, it
is necessary to define a set of acoustic characteristics
to represent each speaker. In the speaker identifica-
tion/verification framework, phonetic information is
often ignored in representing a speaker. For exam-
ple, a codebook, where the mixture components are
not associated with phones, may be used to represent
a speaker. However, in our implementation, we have
used the phonetic information in the speaker models.
A phone-based HMM system is used to represent a
speaker for the speaker pre-clustering purpose. In our
experiment, 52 phones are used, consequently, 52 3-
state HMMs are used for each speaker. We used a
bottom-up scheme to cluster the individual speaker
models. A Gaussian log likelihood is used as a dis-
tance measure in the bottom-up clustering procedure.

1
logP; = —c; | log(2m) + 5 |A| (1)

where, ¢; is the E-M count, éﬁ is the variance of the
Gaussian. n is the dimension.

In measuring the similarity between any 2 speak-
ers, Gaussian log likelihoods are computed between
the same arcs of phone models of 2 speakers. The
overall likelihood between 2 speakers is a summation
over 156 arcs.

If speaker i and j are parameterized by: c¥, HZ’C’ éf
and c;?, H;?, éf, k=1,..., K, K is the number of arcs,

we compute a merged Gaussian as:
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Then, using formula (1) to compute the likelihood.

The bottom-up clustering starts with each node
represents a speaker. At every step, 2 nodes are merged
into one such that the merged node has a larger like-
lihood than all other possible merges. The merging
continues till the bottom-up tree has the desired num-
ber of nodes on the top level.

The distance measure used in the bottom-up clus-
tering procedure is the Gaussian log likelihood. We
found that this performed better than other distance
measures such as Kullback-Leibler, Euclidean, etc.

4 MODELS FOR THE CLUSTERS

After pre-clustering the speakers, we need to build an
acoustic characterization for each speaker cluster in
order to determine which clusters are close to the test
speaker. An acoustic system is trained using speech
data from the speakers who belong to the cluster. The
cluster-dependent system was chosen to have the same
complexity as a speaker-independent system. In our
experiment, each cluster contains anywhere from 9 to
31 speakers, and each speaker has 100-200 utterances
available in the training corpus, producing 1000-5000
utterances for each cluster. However, 1000-5000 utter-
ances from each cluster still do not suffice to robustly
estimate the parameters of the cluster-dependent mod-
els. We used Bayesian adaptation techniquesl®! to
smooth each cluster-dependent model with a speaker-
independent model.

Let L denote the total number of Gaussains, d
denote the dimension of the acoustic features, and
Hznd,éznd,pjnd i = 1,---, L denote the means, vari-
ances and priors of a speaker-independent acoustic
model; and let the k** cluster be parametrized by
Hf,éf,pf i = 1,---, L. We use the re-estimation
formulae
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where, J is the collection of Gaussians which belong to
the same leaf as ith Gaussian does, and 7 is a constant.
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Here ¢;(¢) is the a-posterioriprobability of the Gauss-

ian ¢ at time ¢, conditioned on all acoustic observations
yf, and the terms ci(t),ni,fy' are usually referred to
) 0,7,

as the E-M counts.

5 SELECTING A SUBSET OF
CLUSTERS

Here we discuss, how to find a subset of the clusters
which are acoustically closest to the test speaker. We
ran some initial speaker recognition experiments to de-
cide on the distance measure to be used in the cluster
selection procedure.

In the speaker recognition experiment, we selected
a subset of the training speakers and evaluated the
phone-based speaker model that was closest to each
training speaker based on various distance measures.
Ideally of course, the closest model should be the model
of the selected training speaker. Our results indicated
that a Euclidean distance measure was better than the
other measures that we tried. When the Mahalanobis
distance was used in the speaker recognition experi-
ment, the correct model was selected only 62.3% of
the time. While when Euclidean distance was used,
the correct model was selected 100% of the time.

Consequently, it appears that the Euclidean dis-
tance is a better measure to use in the cluster selection
process. The results of the speech recognition experi-
ments we report in the following sections also confirm
this inference.

The speech data from a test speaker is first de-
coded using a speaker-independent system to gener-
ate a transcription. Subsequently, the data is Viterbi-
aligned against the transcription and each acoustic ob-
servation is tagged with an allophone id. The distance
of the adaptation data, conditioned on the Viterbi
alignment, to each cluster-dependent model is then

calculated using each cluster model, and the clusters
are ranked in the order of this distance. The top N
clusters are then selected as being acoustically close
to the test speaker. In computing this distance, we
have the option of using the Euclidean distance or the
Mahalanobis distance depending on the final recogni-
tion accuracy.

6 TRANSFORMATION AND
RE-ESTIMATION OF
GAUSSIANS

We next use the MLLR!? technique to transform a
cluster-dependent model and bring it closer to the test
speaker. Given some observations from a test speaker,
a subset of clusters can be selected using the above pro-
cedure. Given a selected cluster model, mean Hf and

variance Af, one can compute a posterior probability,

cf(t) of the i** Gaussian at time ¢, conditioned on all
the acoustic observations in the adaptation data, and
compute the transformations so as to maximize the
likelihood of the adaptation data, given the selected
cluster model. This is equivalent to minimizing the
following objective functionl?l:
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with respect to ék. Here, ék is a (d)x(d + 1) ma-

trix, and H} is a (d + 1)x1 vector obtained from Hf as
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Once the transformations have been computed, the
transformed means of cluster model become Ak,uf
The Gaussian means of the adapted model can be
formed by accumulating the transformed model means
of all selected clusters using the re-estimation formu-
lae given below, while the variances of the model is

left unchanged at the speaker-independent values.
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7 EXPERIMENTS AND
DISCUSSIONS

In our experiments, the size of our model was 36,000
Gaussians. The training corpus (Wall Street Journal
database) has 284 speakers, half male and half fernale.



Each speaker has about 100 sentences of speech data
in the training corpus.

The baseline system and the new algorithm are
evaluated using 10 test speakers. We have also com-
pared our algorithm with standard MLLR[?! adapta-
tion as well. Each of the 10 test speakers has 50 sen-
tences of adaptation data and 61 sentences of testing
data.

The baseline speaker-independent system has an
average word error rate of 16.35% over the 10 test
speakers. MLLR adaptation reduces the error rate to
12.67% using 50 adaptation utterances with an aver-
age of 25 transformations for each speaker.

For the speaker-pre-clustering purpose, each train-
ing speaker is modelled by 156 gaussians (one gauss-
ian per state, with 3 states for each of 52 phones).
When these training speaker models are bottom-up
clustered, the scheme generates 15 clusters, each con-
taining anywhere from 9 to 31 speakers. Each cluster
has about 1000-5000 utterances and a 36,000-Gaussian
system is built for each cluster by using the data from
the speakers belonging to the cluster.

In the tables below, we compared the performance
with the use of the Mahalanobis distance and Euclid-
ean distance in selecting close clusters for each test
speaker. We also compared 2 different ways of select-
ing the number of clusters: in the first way, we fixed
the number of selected clusters. In the second way,
we selected a subset of clusters subject to a maximum
number of speakers in the selected clusters. For a given
threshold of maximum number of selected speakers,
the selected number of clusters for test speakers may
be different from one test speaker to another depend-
ing on how many speakers each cluster contains.

7t of clusters | Mahalanobis | Euclidean

3 12.56% 12.11%

5 12.07%

6 12.44%

8 12.29%

10 12.18%

12 12.20%

15 12.25%

7t of spkrs: Max Ave | Mahalanobis | Euclidean

80 69 12.51% 12.18%
90 76 12.05%
100 89 12.40% 12.01%
110 100 12.03%
120 110 12.18%
150 141 12.26%
200 184 12.12%

From the viewpoint of recognition error rate of the
final speaker adapted system, the Euclidean distance

measurement is superior to the Mahalanobis distance.
We can also compare different distance measures in
terms of number of selected speakers. In [1], the op-
timum performance was obtained when the 50 clos-
est training speakers were selected to build a speaker-
adapted system. However, in our experiments with the
Mahalanobis distance, we see that the performance is
better when more speakers (the best performance is
obtained when the number of clusters selected is 10,
which corresponds to selecting a total of 184 speakers
on average) are used. Meanwhile, from the experi-
ments that use the Euclidean distance, we see that
fewer clusters need to be selected (average number of
speakers is 89) to obtain optimal performance. We be-
lieve these experiments reflect the quality of different
cluster selecting techniques, and clearly, the Euclid-
ean distance is better than the Mahanalobis distance
in cluster selection.

Comparing these results with the MLLR techniquel?],
MLLR provides a 22.5% relative improvement over the
speaker-independent system, while our scheme pro-
vides a relative improvement of 26.5% over the speaker-
independent performance. The NIST “standard” bench-
mark testing program(? is used to compary the per-
formance of our method with MLLR in terms of sta-
tistical significance. It shows the improvement over
MLLR is significant.

We are currently investigating other ways of pre-
clustering speakers. For example, one can totally ig-
nore the phonetic information during speaker cluster-
ing and use VQ based acoustic characteristics to rep-
resent a speaker. On the other hand, one can empha-
size the context information and do a phone-dependent
speaker clustering. For example, certain phones of
speaker A belong to cluster k, and some other phones
of the same speaker belong to cluster j, and so on.
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