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ABSTRACT

In this paper, we describe a rate of speech estima-
tor that is derived directly from the acoustic signal.
This measure has been developed as an alternative
to lexical measures of speaking rate such as phones
or syllables per second, which, in previous work, we
estimated using a first recognition pass; the accuracy
of our earlier lexical rate estimate depended on the
quality of recognition. Here we show that our new
measure is a good predictor of word error rate, and
in addition, correlates moderately well with lexical
speech rate. We also show that a simple modification
of the model transition probabilities based on this
measure can reduce the error rate almost as much as
using lexical phones per second calculated from man-
ually transcribed data. When we categorized test ut-
terances based on speaking rate thresholds computed
from the training set, we observed that a different
transition probability value was required to minimize
the error rate in each speaking rate bin. However,
the reduction of error provided by this approach is
still small in comparison with the increases in error
observed for unusually fast or slow speech.

1. INTRODUCTION

In previous work we [1] and others [3, 4] have ob-
served strong correlations between the performance
of speech recognition systems and deviation of the
test data from the average rate of speech observed in
training data. We have also documented that some
fairly simple changes to the system (e.g., modifica-
tion of state transition probabilities) can be used to
improve performance in this case. However, our strat-
egy was based on a lezically-based measure of speak-
ing rate. The best measures that we found were
based on counting phonetic units following recogni-
tion. This required a recognizer that performed rea-
sonably well in the first place. For difficult problems
such as the recognition of conversational speech, per-
formance may be too poor for this to be a reliable
technique. One solution to this problem is to try to
estimate phone boundaries without using a full rec-

ognizer; for instance, Verhasselt and Martens [5] em-
ployed a multi-layer perceptron approach with mea-
surable success on the TIMIT database.

However, in conversational speech common phonetic
units corresponding to allophones or allophone seg-
ments may be significantly transformed or even disap-
pear, and so may not be reliable measures of speaking
rate. We believe that it would be desirable to develop
a measure of speaking rate that is directly based on
signal processing of the speech, without reference to
lexical units or requiring the use of a recognition sys-
tem for estimation. Such a measure should also be
continuously computable, and yet correlate reason-
ably well with lexically-based measures such as phone
count (although some errors are inevitable due to the
phone transformation mentioned above).

In the work described here; we have begun to address
these concerns. In particular, we have developed a
simple estimator of speech rate based on 1-2 seconds
of the speech signal. We have computed the mea-
sure for a sample of data from the Switchboard Cor-
pus that has been phonetically transcribed, as well
as for a phonetically transcribed portion of the OGI
Numbers corpus from the Oregon Graduate Institute.
In each case we have determined the correlation co-
efficient between a windowed phone count and the
new measure for this sample. We also have exam-
ined the relationship between this measure and word
error rate. Finally, we have implemented a prelim-
inary recognition strategy in which we only modify
the transition probabilities of a hybrid system given
the rate estimate, and have observed results for the
Numbers corpus.

2. SIGNAL ANALYSIS

Previous work [2] has demonstrated that the speech
signal is significantly altered for varying speaking rates.
The most obvious change to the speech, however, is
the variation in the energy envelope. In other words,
the energy envelope of the speech simply has more
rapid change when the speaking rate is higher. This



should be reflected in the short term spectrum of the
energy envelope. Finer (more frequency-dependent)
measures could potentially provide higher accuracy,
but as a first attempt the wideband measure should
incorporate the gross properties of speaking rate.

We have experimented with such a measure, which
we currently refer to as the energy rate or enrate.
Currently, our basic analysis steps are:

1. Half-wave rectify the signal waveform.

2. Low-pass filter the rectified waveform (currently
with a single real pole at 16 Hz).

3. Downsample to 100 Hz.

4. Hamming window 1-2 seconds of speech (one
second windows provide better dynamics, 2 sec-
ond windows are more stable). Step the win-
dows with significant overlap (e.g., >75%).

5. Compute a short-term spectrum. Currently this
is done using a DFT (we only use values up to
16 Hz, so a full FFT is not done).

6. Compute a spectral moment (index-weighting
each power spectral value and summing), ignor-
ing the first few spectral values (i.e., ignoring

d.c.).

During development we observed that the enrate’s
behavior was roughly comparable to a syllabic rate.

It may be desirable to change one or more aspects
of the enrate — for instance, using an adaptive fil-
ter to estimate a single best-fit resonance might be
preferable to using the DFT. However, it currently
appears that even this very simple measure matches
the gross rate properties reasonably well. To demon-
strate this, we have experimented with enrate on the
Switchboard conversational speech corpus, compar-
ing with manual markings done at ICSI.

3. EXPERIMENT 1: CORRELATION
WITH LEXICAL SPEAKING RATE

The rate analysis was performed on 451 segmented
utterances that are part of the 1996 development test
partition used at the Johns Hopkins 1996 Workshop
on Conversational Speech Recognition. These utter-
ances had previously been manually annotated by
Steve Greenberg and his students at Berkeley, so that
phonetic alignments were available. Phonetic transi-
tions were counted from these annotations using a two
second window that was stepped every 10 msec, and
this count was used as a local lexically-based measure
of speaking rate. A two second window was used for
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Figure 1: Increasing error rates with faster speech

rate estimation. The initial and final 100 frames (for
which a full window was not available) were assigned
the value of the closest valid 2 second window. This
measure was then compared with the corresponding
measure from the signal processing described in the
previous section. Two colleagues at ICSI, Dan Ellis
and Joy Hollenback, also provided a rough syllabifi-
cation of the development sentences; the same lexical
rate measure was applied in order to determine the
syllabic rate using the same windowing criterion.

4. RESULTS AND DISCUSSION

Correlations were calculated between enrate and win-
dowed lexical (phone and syllable) measures of speech
rate; 136782 frames of conversational telephone speech
from development test data in the Switchboard cor-
pus were used. Surprisingly, the match was better
between the energy-based rate measure and the pho-
netic rate (correlation=0.50), rather than the syllabic
(correlation=0.42). However, this may be due to in-
accuracies in the syllabic markings, which were ob-
tained by a semiautomatic procedure. The phonetic
markings, on the other hand, were manually gener-
ated. The correlations are strongly significant, but
clearly the new measure is at present fairly noisy.

In a follow-up experiment, we computed the enrate
and a corresponding phone-based measure derived
from automatic alignments on utterances from the
OGI Numbers corpus using a window covering the
whole utterance, and got quite similar results (cor-
relations of roughly 0.5 between the phonetic counts
and new rate measure). In addition, we calculated
the average error rate for different speaking rates for
our baseline system (Figure 1), and found that a high
speaking rate measurement was a good predictor of
increased errors, even for our crude estimator.
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Figure 2: Response of development test set to tran-
sition probabilities. From slowest to fastest, the n in

each bin were 873, 1748, 1423, and 626.

5. EXPERIMENT 2: INCORPORATING
SPEAKING RATE IN RECOGNITION

As noted above, in previous work on speaking rate
we found that we were able to significantly reduce
the word error rate for rapidly spoken sentences us-
ing a gross measure of the average phone rate for
an utterance to simply classify the utterance as fast
or not. We were able to do this either by modify-
ing the state transition probabilities in our hybrid
ANN/HMM system or by altering the acoustic prob-
abilities. In that study (which focused on sentences
read from the Wall Street Journal), the transition
probability modification was the most effective; for
instance, increasing the probability of exiting a state
reduced the errors on fast speakers significantly.

More recently, we have incorporated the enrate mea-
sure to experimentally determine the best transition
probabilities for different speaking rates in the OGI
Numbers corpus. We calculated the enrate for each
utterance of the corpus.! Using the mean and stan-
dard deviation of speaking rate from the training set,
the development test set was divided into four bins.

The baseline duration model of our recognizer fixes
the number of states per phone to correspond to half
of the mean duration of the phone, but sets the tran-
sition probabilities between states to 0.5. For recog-
nition experiments using utterances with moderate
speaking rates, this choice was roughly as good as us-
ing transition probability estimates that were more
model-specific. To find an upper bound for improve-
ments based on coarse changes to a single exit proba-
bility for all phones; we changed the exit probability
for all HMMs to favor or disfavor faster speech; the

1To calculate one rate measure per utterance, the signal
processing window was enlarged to cover the entire utterance.

word error rate for the rate-based test set bins given
different state exit probability settings can be seen
in Figure 2. The optimal exit transition probabil-
ity (indicated by the circles on each line) increases
with speaking rate, giving a 14% and 24% relative
improvement for the fastest and slowest utterances
respectively, in comparison to the baseline system.

How does the probability on the abscissa correspond
to the average durations in the four rate bins for the
training set? If we could learn a consistent relation
between durations and this probability, then we could
set the exit probability for each estimated speaking
rate. Assume a model ¢ with k; left-to-right states
with no skips permitted, but with a self-loop permit-
ted on the last state only. If the optimum exit proba-
bility corresponded to matching the average duration,
then
erit __

bi pi — (ki —1) W
This can be easily derived by taking the expected
value of the exponential duration function.

As noted above, for our systems, the number of states
k; 1s chosen to be half of the average phone duration
over the whole training set; this has been found to be
a good rule-of-thumb approach to setting minimum
durations for our system. To derive the exit proba-
bility automatically one could imagine separately us-
ing the duration y; for each bin determined from the
enrate measure on the training set (as described in
Figure 2).

When this relation is used, the exit probability (based
on matching mean durations) varies between roughly
.1 and .2 for the slowest and fastest bins respectively.
This is not a good match to the exit probabilities
that we observe to be the best for recognition (as
can be seen from Figure 2). Further inspection of
the duration distributions show that rapid speech ex-
hibits a much more skewed characteristic than slow
speech. This suggests that it would be better to incor-
porate explicit duration modeling for the individual
bins, rather than to simply use implicit exponential
models that match the mean of the sample distribu-
tion.

For the experiments illustrated in Figure 2, we would
like to know how much the noisy estimation of speak-
ing rate limits performance (since, after all, the en-
rate has only a .5 correlation with the phonetic rate).
To examine this, we redid the experiment using man-
ually transcribed phone sequences to derive a lexi-
cal measure of rate, split up the training set as be-
fore and adjusted the exit probability separately for
each partition to minimize the error rate. The results
are shown in Table 1. It can be seen that while the
enrate-based procedure doesn’t reduce the error as
much as a lexical measure based on manual phonetic



| Exit probability | Word Error Rate |

Optimum overall 8.57%
Enrate-derived 7.73%
Manual transcription-derived 7.54%

Table 1: Word error rates for OGI Numbers develop-
ment set. Error rates are computed over complete set

of 4670 words.

transcriptions, it is pretty close (and you don’t need
a good estimate of the phonetic transcription!) In
both cases, the error rate reduction for the bin with
the most rapid speech was roughly 14% in relative
terms (though this figure is not directly comparable
since the two rate-based procedures result in different
criteria to classify an utterance as “fast”.) However,
preliminary results using exit probabilities set from
the development set have not yet yielded much im-
provement on an independent test set, even for the
case of rates derived from manual transcriptions. It
also appears that this lack of generalization was not
due to a mismatch of the speaking rate thresholds.

6. DISCUSSION

In this paper we have shown that, without estimating
the number of lexical units per second directly (i.e.,
through recognition), we can estimate speaking rate
from the acoustic signal. We have also noted that
we can reduce the recognition error rate by choosing
different HMM exit probabilities for utterances with
different enrate values. While enrate is only moder-
ately correlated with lexically-based measures, 1t ap-
pears to work well enough for this partitioning task.
The exit probability was chosen as a single global pa-
rameter. It is likely that we will need more detailed
durational models (e.g., altering transition probabil-
ities separately for different broad classes) in order
to generalize better. Also, we know durational ef-
fects to be accompanied by other phenomena that we
have observed in rapid (or unusually slow) speech, but
have not yet incorporated. In particular, the current
study doesn’t use any modification of the pronuncia-
tions, nor are the emission probabilities adapted as we
have done in previous studies using lexical measures
of rate. We are also interested in exploring the appli-
cability of statistical models that jointly model emis-
sion and transition, since we currently don’t know
how to jointly compensate for these effects with the
models described here.
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