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ABSTRACT

The combination of a model of auditory perception
(PEMO) as feature extractor and of a Locally Re-
current Neural Network (LRNN) as classifier yields
promising ASR results in noise. Our study focuses
on the interplay between both techniques and their
ability to complement each other in the task of ro-
bust speech recognition. We performed recognition
experiments with modifications of PEMO process-
ing concerning amplitude compression and envelope
modulation filtering. The results show that the dis-
tinct and sparse peaks of PEMO speech representa-
tion which are well maintained in noise are sufficient
cues for LRNN-based recognition due to LRNN’s
ability to exploit information which is distributed
over time. Enhanced envelope modulation bandpass
filtering of PEMO feature vectors better reflects the
average modulation spectrum of speech and further
decreases the influence of noise.

1. INTRODUCTION

One major problem in automatic speech recognition
(ASR) is the robustness of ASR systems against
noise. Even slightly disturbed speech often leads
to severe increase of the error rate, making the
usefulness of the system questionable. Earlier in-
vestigations [1] have shown that a speech recogni-
tion system combining feature extraction based on a
model of human auditory perception (PEMO) with a
Locally Recurrent Neural Network (LRNN) as clas-
sifier is a promising approach to speech recognition
in noisy environments. The combination of PEMO
and LRNN yielded significantly higher isolated-word
recognition rates than systems with mel-frequency
cepstra or RASTA coefficients as feature vectors
in combination with a discrete HMM recognizer.
Adaptive J-RASTA processing [2] gave comparable
results, but parts of the input signal are assumed to
be speech free for noise estimation then, whereas no
such assumptions are required for PEMO process-

ing. This study focuses on a deeper investigation
on the interplay between PEMO feature extraction
and subsequent LRNN-based recognition. Our aim
was to demonstrate the characteristics of PEMO
representation of speech and to show how LRNN
recognition, in contrast to HMM-based recognition,
takes advantage of this kind of speech representation
for robust recognition in noise. In addition, a mod-
ulation bandpass filter which reflects the average
envelope modulation spectrum of speech is intro-
duced to further decrease the influence of noise in
recognition tasks.

2. RECOGNITION SYSTEM

2.1. Feature extraction

PEMO processing was originally developed to pre-
dict human performance in typical psychoacoustical
temporal and spectral masking experiments [3]. The
main processing steps of PEMO are (i) filtering of
the digitized input signal in a basilar membrane filter
bank which simulates the transfer functions of the
peripheral filters, (ii) half wave rectification and low
pass filtering at 1 kHz for envelope extraction in each
frequency channel, (iii) an adaptive dynamic com-
pression unit which compresses steady-state portions
of the input signal almost logarithmically, whereas
fast changes are transmitted linearly, and (iv) low
pass filtering of the fast fluctuating envelope in each
frequency channel at a cutoff frequency of 8 Hz.
17 frequency channels with center frequencies from
300 - 3300 Hz were used for feature extraction. The
main characteristics of PEMO speech representation
can be seen in Fig. 1. The first panel shows the fil-
tered waveform of the German word “wiederholen”
spoken by a male speaker. Plotted is one frequency
channel of the filter bank corresponding to a center
frequency of 720 Hz. The second panel shows the
processed PEMO output of the utterance in this fre-
quency channel. The enhanced encoding of signal
onsets and offsets can be seen, as well as reduced
sensitivity in an interval of recovery after the first
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Figure 1. Example of speech representation per-
formed by PEMO processing. See text.

peak. In the third panel, the utterance was dis-
turbed with white noise added at 5 dB SNR before
filtering. The same frequency channel as in the
first panel is shown. In the last panel, the corre-
sponding response after PEMO processing is shown.
In non-speech intervals, the stationary background
noise is compressed but still causes distortions in the
representation compared to the undisturbed utter-
ance. The distinct peaks, which represent changes
in the input signal induced by speech portions, are
not represented with the same magnitude as in the
undisturbed case, but the overall structure is main-
tained. For further processing, the output of the
auditory preprocessing is sampled at 100 Hz, the
resulting feature vectors serve as input to the LRNN
recognizer. PEMO processing is implemented in C-
Code and takes about 1.4 times real time on an SGI
RS 5000 workstation.

2.2. LRNN recognition

LRNN are biologically motivated and have been in-
troduced in [4] in order to reduce the computational
complexity of fully connected recurrent neural net-
works. It has been shown that ASR systems based
on LRNN achieve recognition results for isolated
words and connected digits which are comparable
to sophisticated HMM-based systems. LRNN con-

sists of an input layer, a hidden layer with locally
recurrent connections and an output layer. The
interaction between neighboring layers are unidi-
rectional and sparse. The recurrent connections of
the hidden neurons are ending at the edges of the
grid. The network is trained by truncated back-
propagation through time. Due to the recurrent
connections in a LRNN it is possible to exploit infor-
mation distributed over time in a feature sequence
for classification. Compared to approaches based
on Hidden Markov Models, the extraction of dy-
namic features is obsolete and no Viterbi algorithm
for compensating varying word durations is required.

3. SPEECH MATERIAL

Recognition experiments were performed with
isolated-spoken German digits. The speech mate-
rial was recorded at high quality, but was filtered
with a telephone transmission transfer function be-
fore feature extraction. 100 utterances of each digit
from two independent sets of 100 speakers both male
and female were used for training and testing. An-
other set of speech material was introduced to attain
more realistic test conditions. It consisted of 100
utterances of each digit recorded over dialed-up tele-
phone lines in the Berlin area.

4. EXPERIMENT 1
4.1. Modifications of PEMO

The aim of the first experiment was to analyze the
interplay between PEMO and LRNN. The process-
ing step of PEMO which dominates the characteristic
of the signal representation is the adaptive dynamic
compression which contrasts signal on- and offsets,
whereas constant portions from the input signal are
suppressed. Thus, the signal representation is sparse,
it contains distinct peaks rather than constant ex-
citation over lots of time frames. To evaluate the
importance of this type of signal representation for
robust speech recognition with LRNN, the adapta-
tion loops, which perform adaptive amplitude com-
pression in PEMO processing, were replaced by a
static logarithmic compression of the dynamic range
(LOG). The second variation of PEMO went into the
opposite direction: the emphasize of changes in the
input signal was further increased, steady-state por-
tions were compressed even more by squaring the fea-
ture values (MOD). Speaker-independent, isolated-
digit recognition experiments were performed with
PEMO, LOG and MOD in combination with LRNN.
For comparison, recognition rates were also mea-
sured with a continuous Hidden Markov recognizer
(CHMM). 5 Gaussian mixtures per state, diagonal
covariance matrices and 6 emitting states per word
model were used for the experiments.



LRNN CHMM
CLN [ S10 | TEL | CLN [ S10 | TEL
PEMO || 98.2 | 89.0 | 93.1 || 939 | 46.7 | 69.4
MOD || 97.2 | 89.3 | 925 || 92.0 | 54.0 | 64.3
LOG | 985 | 10.0 | 10.9 || 92.7 | 26.1 | 66.0

| FILT | 985 [ 95.1 | 945 [| 93.4 | 50.7 [ 80.2 |

Table 1. Speaker-independent recognition rates in
per cent from experiments I (first three rows) and II
(last row). CLN: clean speech. S10: speech simulat-
ing noise added at 10 dB SNR to the test material.
TEL: real telephone speech for testing.

Speaker-independent recognition rates were mea-
sured on three sets of test data: undisturbed speech
(CLN), speech which was distorted by additive
speech simulating noise at 10 dB SNR before feature
extraction (S10), and speech recorded via telephone
lines (TEL). The recognition rates are shown in Ta-
ble 1. For LRNN, no significant differences can be
observed between PEMO and MOD. With LOG,
high recognition rates are yielded in clean speech,
but the rate drops to chance when the test material
is disturbed by additive (S10) or convolutive noise
(TEL). For the CHMM recognizer, the three types
of features allow comparable results in clean speech.
In disturbed speech, PEMO or MOD feature extrac-
tion helps to increase recognition rates significantly
compared to fixed compression in LOG, but by far
not to the extend as in LRNN classification. The
results indicate that distinct and sparse coding of
the input signal which emphasizes changes rather
than constant portions (PEMO and MOD) leads
to robust recognition in combination with LRNN.
If the prominent peaks which encode the temporal
evolution of the signal are missing (LOG), no suffi-
cient cues for LRNN recognition are left in disturbed
speech.

4.2. Manipulating the features

We analyzed the contribution of sparse and distinct
peaks from PEMO processing to robust recogni-
tion and the differences between LRNN and CHMM
classification in further tests. For the tests, feature
vectors extracted from the test material were ma-
nipulated before scoring. Each feature value which
did not exceed a certain threshold value was set
to zero. The recognition rates were measured as a
function of the threshold. The results are shown in
Fig. 2. It can be seen that the distinct peaks in
the representation of the speech signals are the most
relevant information for LRNN. A recognition rate
above 90% is maintained even if 80% of the feature
values are set to zero. CHMM recognition, on the
other hand, needs all information encoded in the
features including the low values between distinct
peaks which are more distorted in background noise,
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Figure 2. Recognition Rates for LRNN
and CHMM as function of threshold for the
values of PEMO features. All feature val-
ues below the threshold were set to zero.
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Figure 3. Recognition Rates for LRNN and CHMM
as function of noise level between the distinct peaks
of PEMO representation. See text.

as can be seen in Fig. 1. In a second test, each
feature value which did not exceed a threshold value
of 0.2 (70% of all feature values) was set to a ran-
dom value between 0 and z. The recognition rates
were measured as a function of . The results are
shown in Fig. 3. Even if the feature values below the
threshold are heavily disturbed, LRNN is almost not
affected in its performance. Due to recurrent con-
nections LRNN is able to classify information which
is distributed over time. A pattern can be recognized
even if the space “in between” the prominent peaks
is heavily disturbed. CHMM-based recognition, on
the other hand, scores each single time frame with-
out regarding temporal context. Distortions between
the relevant information of the sparse and distinct
PEMO coding then have a strong impact on the
recognition performance.

5. EXPERIMENT II

The envelope modulation spectrum of speech typi-
cally shows a broad peak between 3-8 Hz modula-
tion frequency which origins from the average rate
of phonemes and articulator movement [5]. In hu-
man speech perception, analysis of low modulation
frequencies appears to play a major role. In a recent
study on the intelligibility of temporally-smeared
speech it was found that modulations at rates above
16 Hz are not required for speech intelligibility [6].



o]
= -5
x=) / —
T
g
8 -15
2 |
< 0
-25
-30
(o] 5 10 15 20 25 30

Modulation Frequency [Hz]

Figure 4. Envelope modulation transfer function
of PEMO in the low modulation frequency range.
Very slow envelope fluctuations are attenuated by
the steady-state compression, fast fluctuations are
suppressed by the 8 Hz low pass filter at the end of
PEMO processing
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Figure 5. Envelope modulation transfer function of
PEMO with enhanced modulation band pass filter-
ing (FILT)

PEMO processing has an inherent envelope modu-
lation band pass filter which attenuates very slow
changes as well as quick changes in the envelope due
to the adaptive compression and the 8 Hz low pass
filter, respectively. PEMOs inherent modulation
transfer function is shown in Fig. 4. The maximum
envelope modulation transmission of the model can
be found at modulation frequencies around 6 Hz.
Thus, the influence of very slow or fast fluctuating
noise is weakened. Hermansky et al. introduced
modulation bandpass filtering of spectral compo-
nents for speech recognition in noise and speech
enhancement (RASTA [2]), but with much steeper
filter functions than PEMO. We applied this kind of
bandpass filter on PEMO feature vectors, thus in-
creasing PEMOs inherent filtering as shown in Fig. 5
(FILT). Recognition experiments were carried out in
different test conditions. The results are shown in
Table 1 (last row). It can be seen that additional
modulation filtering lessens the influence of noise
on the feature vectors and allows a further increase
of the recognition rate in combination witch LRNN
as classifier. In additive noise at 10 dB SNR, a
recognition rate of 95.1% was reached. Telephone

digits could be recognized with 94.5%, even if the
training was performed on telephone-filtered studio
speech. (When trained on real telephone speech, a
recognition rate of 97.4% was reached). The CHMM
recognizer profits from enhanced modulation filter-
ing, as well, but still the recognition rates are much
lower than with the LRNN classifier.

6. CONCLUSION

Due to the ability of LRNN to exploit information
which is distributed over time and to consider tem-
poral context, it is predestinated to take advantage
of PEMO processing of speech which supplies a
sparse and distinct representation of the input sig-
nal. The prominent peaks of this representation are
well maintained in noise and allow high recognition
rates even under poor conditions. Modulation fre-
quencies outside the range of the average envelope
modulation spectrum of speech do not have to be
encoded in the signal representation. Their attenua-
tion further decreases the influence of both additive
and convolutive noise and is a further step towards
robust speech recognition. The computational effort
for PEMO and LRNN does not rule out applications
in “real” ASR systems. Current work focuses on
implementing both techniques in hardware.
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