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ABSTRACT

The combination of a model of auditory perception
(PEMO) as feature extractor and of a Locally Re-
current Neural Network (LRNN) as classi�er yields
promising ASR results in noise. Our study focuses
on the interplay between both techniques and their
ability to complement each other in the task of ro-
bust speech recognition. We performed recognition
experiments with modi�cations of PEMO process-
ing concerning amplitude compression and envelope
modulation �ltering. The results show that the dis-
tinct and sparse peaks of PEMO speech representa-
tion which are well maintained in noise are su�cient
cues for LRNN-based recognition due to LRNN's
ability to exploit information which is distributed
over time. Enhanced envelope modulation bandpass
�ltering of PEMO feature vectors better re
ects the
average modulation spectrum of speech and further
decreases the in
uence of noise.

1. INTRODUCTION

One major problem in automatic speech recognition
(ASR) is the robustness of ASR systems against
noise. Even slightly disturbed speech often leads
to severe increase of the error rate, making the
usefulness of the system questionable. Earlier in-
vestigations [1] have shown that a speech recogni-
tion system combining feature extraction based on a
model of human auditory perception (PEMO) with a
Locally Recurrent Neural Network (LRNN) as clas-
si�er is a promising approach to speech recognition
in noisy environments. The combination of PEMO
and LRNN yielded signi�cantly higher isolated-word
recognition rates than systems with mel-frequency
cepstra or RASTA coe�cients as feature vectors
in combination with a discrete HMM recognizer.
Adaptive J-RASTA processing [2] gave comparable
results, but parts of the input signal are assumed to
be speech free for noise estimation then, whereas no
such assumptions are required for PEMO process-

ing. This study focuses on a deeper investigation
on the interplay between PEMO feature extraction
and subsequent LRNN-based recognition. Our aim
was to demonstrate the characteristics of PEMO
representation of speech and to show how LRNN
recognition, in contrast to HMM-based recognition,
takes advantage of this kind of speech representation
for robust recognition in noise. In addition, a mod-
ulation bandpass �lter which re
ects the average
envelope modulation spectrum of speech is intro-
duced to further decrease the in
uence of noise in
recognition tasks.

2. RECOGNITION SYSTEM

2.1. Feature extraction

PEMO processing was originally developed to pre-
dict human performance in typical psychoacoustical
temporal and spectral masking experiments [3]. The
main processing steps of PEMO are (i) �ltering of
the digitized input signal in a basilar membrane �lter
bank which simulates the transfer functions of the
peripheral �lters, (ii) half wave recti�cation and low
pass �ltering at 1 kHz for envelope extraction in each
frequency channel, (iii) an adaptive dynamic com-
pression unit which compresses steady-state portions
of the input signal almost logarithmically, whereas
fast changes are transmitted linearly, and (iv) low
pass �ltering of the fast 
uctuating envelope in each
frequency channel at a cuto� frequency of 8 Hz.
17 frequency channels with center frequencies from
300 - 3300 Hz were used for feature extraction. The
main characteristics of PEMO speech representation
can be seen in Fig. 1. The �rst panel shows the �l-
tered waveform of the German word \wiederholen"
spoken by a male speaker. Plotted is one frequency
channel of the �lter bank corresponding to a center
frequency of 720 Hz. The second panel shows the
processed PEMO output of the utterance in this fre-
quency channel. The enhanced encoding of signal
onsets and o�sets can be seen, as well as reduced
sensitivity in an interval of recovery after the �rst
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LRNN CHMM

CLN S10 TEL CLN S10 TEL

PEMO 98.2 89.0 93.1 93.9 46.7 69.4

MOD 97.2 89.3 92.5 92.0 54.0 64.3

LOG 98.5 10.0 10.9 92.7 26.1 66.0

FILT 98.5 95.1 94.5 93.4 50.7 80.2

Table 1. Speaker-independent recognition rates in
per cent from experiments I (�rst three rows) and II
(last row). CLN: clean speech. S10: speech simulat-
ing noise added at 10 dB SNR to the test material.
TEL: real telephone speech for testing.

Speaker-independent recognition rates were mea-
sured on three sets of test data: undisturbed speech
(CLN), speech which was distorted by additive
speech simulating noise at 10 dB SNR before feature
extraction (S10), and speech recorded via telephone
lines (TEL). The recognition rates are shown in Ta-
ble 1. For LRNN, no signi�cant di�erences can be
observed between PEMO and MOD. With LOG,
high recognition rates are yielded in clean speech,
but the rate drops to chance when the test material
is disturbed by additive (S10) or convolutive noise
(TEL). For the CHMM recognizer, the three types
of features allow comparable results in clean speech.
In disturbed speech, PEMO or MOD feature extrac-
tion helps to increase recognition rates signi�cantly
compared to �xed compression in LOG, but by far
not to the extend as in LRNN classi�cation. The
results indicate that distinct and sparse coding of
the input signal which emphasizes changes rather
than constant portions (PEMO and MOD) leads
to robust recognition in combination with LRNN.
If the prominent peaks which encode the temporal
evolution of the signal are missing (LOG), no su�-
cient cues for LRNN recognition are left in disturbed
speech.

4.2. Manipulating the features

We analyzed the contribution of sparse and distinct
peaks from PEMO processing to robust recogni-
tion and the di�erences between LRNN and CHMM
classi�cation in further tests. For the tests, feature
vectors extracted from the test material were ma-
nipulated before scoring. Each feature value which
did not exceed a certain threshold value was set
to zero. The recognition rates were measured as a
function of the threshold. The results are shown in
Fig. 2. It can be seen that the distinct peaks in
the representation of the speech signals are the most
relevant information for LRNN. A recognition rate
above 90% is maintained even if 80% of the feature
values are set to zero. CHMM recognition, on the
other hand, needs all information encoded in the
features including the low values between distinct
peaks which are more distorted in background noise,
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Figure 2. Recognition Rates for LRNN
and CHMM as function of threshold for the
values of PEMO features. All feature val-
ues below the threshold were set to zero.
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Figure 3. Recognition Rates for LRNN and CHMM
as function of noise level between the distinct peaks
of PEMO representation. See text.

as can be seen in Fig. 1. In a second test, each
feature value which did not exceed a threshold value
of 0.2 (70% of all feature values) was set to a ran-
dom value between 0 and x. The recognition rates
were measured as a function of x. The results are
shown in Fig. 3. Even if the feature values below the
threshold are heavily disturbed, LRNN is almost not
a�ected in its performance. Due to recurrent con-
nections LRNN is able to classify information which
is distributed over time. A pattern can be recognized
even if the space \in between" the prominent peaks
is heavily disturbed. CHMM-based recognition, on
the other hand, scores each single time frame with-
out regarding temporal context. Distortions between
the relevant information of the sparse and distinct
PEMO coding then have a strong impact on the
recognition performance.

5. EXPERIMENT II

The envelope modulation spectrum of speech typi-
cally shows a broad peak between 3-8 Hz modula-
tion frequency which origins from the average rate
of phonemes and articulator movement [5]. In hu-
man speech perception, analysis of low modulation
frequencies appears to play a major role. In a recent
study on the intelligibility of temporally-smeared
speech it was found that modulations at rates above
16 Hz are not required for speech intelligibility [6].
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PEMO processing has an inherent envelope modu-
lation band pass �lter which attenuates very slow
changes as well as quick changes in the envelope due
to the adaptive compression and the 8 Hz low pass
�lter, respectively. PEMOs inherent modulation
transfer function is shown in Fig. 4. The maximum
envelope modulation transmission of the model can
be found at modulation frequencies around 6 Hz.
Thus, the in
uence of very slow or fast 
uctuating
noise is weakened. Hermansky et al. introduced
modulation bandpass �ltering of spectral compo-
nents for speech recognition in noise and speech
enhancement (RASTA [2]), but with much steeper
�lter functions than PEMO. We applied this kind of
bandpass �lter on PEMO feature vectors, thus in-
creasing PEMOs inherent �ltering as shown in Fig. 5
(FILT). Recognition experiments were carried out in
di�erent test conditions. The results are shown in
Table 1 (last row). It can be seen that additional
modulation �ltering lessens the in
uence of noise
on the feature vectors and allows a further increase
of the recognition rate in combination witch LRNN
as classi�er. In additive noise at 10 dB SNR, a
recognition rate of 95.1% was reached. Telephone

digits could be recognized with 94.5%, even if the
training was performed on telephone-�ltered studio
speech. (When trained on real telephone speech, a
recognition rate of 97.4% was reached). The CHMM
recognizer pro�ts from enhanced modulation �lter-
ing, as well, but still the recognition rates are much
lower than with the LRNN classi�er.

6. CONCLUSION

Due to the ability of LRNN to exploit information
which is distributed over time and to consider tem-
poral context, it is predestinated to take advantage
of PEMO processing of speech which supplies a
sparse and distinct representation of the input sig-
nal. The prominent peaks of this representation are
well maintained in noise and allow high recognition
rates even under poor conditions. Modulation fre-
quencies outside the range of the average envelope
modulation spectrum of speech do not have to be
encoded in the signal representation. Their attenua-
tion further decreases the in
uence of both additive
and convolutive noise and is a further step towards
robust speech recognition. The computational e�ort
for PEMO and LRNN does not rule out applications
in \real" ASR systems. Current work focuses on
implementing both techniques in hardware.
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