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ABSTRACT

Linear Discriminant Analysis (LDA) has been widely
applied to speech recognition resulting in improved recog-
nition performance and improved robustness. LDA de-
signs a linear transformation that projects a n-dimensio-
nal space on a m-dimensional space (m < n) such
that the class separability is maximum. This paper
presents new results related to our previous work [6] on
nonlinear discriminant analysis (NLDA) based on the
discriminant properties of Artificial Neural Networks
(ANN) and more particularly MLP. Experiments per-
formed on the isolated word large vocabulary PHONE-
BOOK database show that NLDA provides a method
for designing discriminant features particularly efficient
as well for continuous densities HMM as for hybrid
HMM/ANN recognizers.

1. INTRODUCTION

Speech recognition basically appears to be a statistical
pattern classification problem including classical im-
peratives such as compression and discrimination of the
speech features. Such imperatives can be satisfied by
applying a so-called discriminant analysis consisting in
defining a transformation of a certain signal represen-
tation into another one in order to fit the data to some
phonetic classification.

Discriminant features are often computed by ap-
plying a Linear Discriminant Analysis (LDA) on se-
quences of acoustic vectors. LDA extracts, from these
sequences, a set of discriminant parameters maximiz-
ing the class separability by designing a linear trans-
formation that projects a n-dimensional space on a
m-dimensional space (m < n). Previous works show
that application of LDA to speech recognition prob-
lems increases performance ([2], [3], [4]) and robustness
against some types of noises [6].

In this paper, we propose a method for extracting
discriminant parameters using Artificial Neural Net-
works (ANN) and more particularly Multilayer Per-
ceptrons (MLP). ANN are indeed powerful tools that
can be trained to solve complex nonlinear classification
problems. Each hidden layer of feed-forward networks
computes its outputs as a nonlinear transformation of

its inputs, so that we can consider that each hidden
layer proposes an internal representation of the input
signal that prepares the signal to the classification task.
Therefore, such a representation can be seen as a non-
linear discriminant analysis (NLDA) of the input fea-
tures and provides an alternative to classical speech fea-
tures (MFCC, LPC-cepstrum, RASTA-PLP cepstrum,

).

2. LINEAR DISCRIMINANT ANALYSIS

The purpose of discriminant analysis is to find para-
meters that are well suited for classification tasks. We
know that the optimal parameters for a classification
task are the a posteriori probabilities of the classes
given the observations. Unfortunately these a posteri-
ori probabilities are very hard, if not impossible, to de-
termine. LDA provides a good alternative for comput-
ing discriminant parameters since it is based on simple
criteria associated with systematic feature extraction
algorithms.

LDA computes discriminant features by designing a
linear transformation of vectors z (n-dimensional) into
vectors y (m-dimensional, m < n) such that class sep-
arability is maximum. Class separability is generally
defined as the trace or determinant of the product of
scatter matrices [1] :

J1 = tT‘(SQ_ISl) (1)

Jo = det(S51S) (2)

where S, So are two scatter matrices out of three
(the within scatter matrix, S,,, the between scatter ma-
trix, Sy, and the mixture scatter matrix, Sy,); tr(A4)
denotes the trace of the matrix A and det(A) its deter-
minant.

It can be shown that the optimal linear transfor-
mation for criterion J; or Js is obtained by calculating
the eigenvectors of the matrix (S;'S;).

Though experiments demonstrate the efficiency of
LDA on speech recognition tasks, one could worry about
the efliciency of the criterion itself, i.e. how accurately
does tr(S; ' S1) measures the class separability ? Gen-
erally speaking, tr(S;'S;) is a good measure of class
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Figure 1: MLP with two hidden layers

separability when distributions are unimodal and sep-
arated by the scatter of the means. When the distrib-
utions are multimodal (as it is the case for speech) and
when the means are close together, efficiency of the cri-
terion becomes very bad. So, we are convinced that the
use of neural nets for discriminant analysis can further
improve results obtained with LDA.

3. NONLINEAR DISCRIMINANT
ANALYSIS

Neural networks do not suffer from the same constraints
about the distributions of the classes since they are ba-
sically able to model highly complex nonlinear prob-
lems even if they can not cope with the between class
overlapping problem.

Each hidden layer of a MLP performs a nonlinear
discriminant analysis (NLDA) of the input features.
Nonlinear discriminant analysis can then be achieved
by designing a MLP where the number of nodes con-
tained in the last hidden layer is inferior to the number
of input nodes. Based on this architecture, the hid-
den layer will act as a bottle-neck both decreasing re-
dundancy from the input layer and extracting relevant
information for the classification.

One could worry about the possibility to train effi-
ciently a neural network designed with a small number
of hidden nodes. Practically, training such ANN will
be efficient only for simple tasks. A better way to train
ANN containing a bottle-neck is to introduce a second
hidden layer containing a high number of neurons (as
illustrated in figure 1).

The MLP is trained in a classical way (error back-
propagation) to classify sequences of feature vectors
(to catch the context information) in terms of phonetic
classes.

Once the neural network has been trained, we ex-
pect that the outputs of the last hidden layer will pro-
vide us with discriminant features that will be fed to
a classical recognizer (discrete HMM, Multi-gaussian
HMM, hybrid HMM/MLP, ...) as shown in figure 2.

Recognizer

Figure 2: Configuration of the MLP as feature extrac-
tor

The so-defined features gather the following advantages :

o We are expected to achieve a high class separa-
bility.

e We can expect that redundant information has
been filtered by the MLP (as an effect of the
global parameter optimization).

e As, under some training constraints, MLP pro-
vide estimations of a posteriori probabilities [7],
the optimization criterion we use for our discrim-
inant analysis is directly related to e posteriori
probabilities which is not the case for LDA.

e On the opposite to cepstral features which are
widely used in speech recognition, all our para-
meters are relevant (indeed, only the first cepstral
coefficients are used, usually 12 to 16), so that dif-
ferent acoustic vector dimensions could be used.

e The variances of the parameters are naturally
normalized (effect of the sigmoid function) which
could be of some interest when vector quantiza-
tion is applied.

4. DATABASES AND RECOGNITION
TASKS

For all experiments, we used the PhoneBook database,
which is completely described in [8]. PhoneBook is
a phonetically rich, large vocabulary, isolated words
database. The main features of PhoneBook are :

92,000 isolated word utterances

1,300 American English native speakers, each of
them pronouncing 75 words in average

8,000 words vocabulary

Telephone quality

The database is composed of 106 lists of 75 words
(totalling 8,000 vocabulary words), each word being
uttered approximately 11 times. The training set was
composed of 21 lists (approximately 5 hours of speech)
and 8 lists were used to design test sets(6598 utter-
ances).



Two test sets were designed for testing the recog-
nizers :

1. The first test set (refered to as test set I in the
sequel) aims to test the systems for small vocab-
ulary tasks. Therefore, we ran eight recognition
tests independently on the eight different word
lists. This provided us with eight recognition
rates that are averaged to obtain the global recog-
nition rate. The words of the eight test word lists
did not belong to the training vocabulary.

2. The second test set (test set 2) is build with the
same eight word lists of 75 words but the recogni-
tion is performed with a global dictionary of 600
words (8 * 75). The second test set corresponds
to a medium vocabulary, task independent exper-
iment.

Tests have been conducted on both a continuous
densities HMM recognizer (CDHMM) and a hybrid
HMM/MLP recognizer. The feature vector was com-
posed of 26 parameters (12 RASTA-PLP coefficients,
their first derivatives, the first and second derivatives of
log-energy) for the HMM/MLP recognizer and 38 pa-
rameters (including second derivatives of RASTA-PLP
coefficients) for the CDHMM.

In the CDHMM based recognizers, emission proba-
bilities of context-independent phone models (3 states/
phone) were estimated by gaussian mixtures (12 mix-
tures/state) with diagonal covariance matrices. Nei-
ther state tying, nor mixture tying was applied in our
experiments.

NLDA parameters were computed from two hidden
layer MLP trained to estimate posterior probabilities of
context independent phone models given nine frames of
contextual information.

5. RESULTS

Recognition results are presented in table 1 for con-
tinuous densities HMM and in table 2 for the hybrid
HMM/MLP recognizers. Differences of performance
between CDHMM and hybrid HMM/ANN can be ex-
plained by the fact that we only trained context inde-
pendent phone models and that a minimum duration
of phone models was imposed for the hybrid systems
and not for CDHMM.

In our experiments, we first try to extract NLDA
parameters from a single hidden layer MLP (NLDA-
234-38-47). Corresponding results indicate clearly that
this structure is inefficient due to the reduced size of
the MLP that is unable to estimate reliable posterior
probabilities. Experiments with two hidden layer MLP
show that improvement on the continuous densities
recognizer is quite significant (about 256% reduction of
the error rate) on both test sets. This could be ex-
plained by the fact that gaussians have diagonal co-
variance matrices which supposes that the parameters

Recognizer Rec rate (%) | Rec rate (%)
Test set 1 Test set 2
Baseline 6.7 % 17.7 %
NLDA 234-38-47 176 % -
NLDA 234-300-26-47 53 % -
NLDA 234-300-38-47 51 % 14.0 %
NLDA 234-300-64-47 58 % -

Table 1: Recognition results using a nonlinear dis-
criminant analysis on a continuous recognizer. NLDA
a — b(—c) — d stands for parameters extracted using
an MLP designed with a input nodes, b hidden nodes
in the first hidden layer, ¢ hidden nodes in the second
hidden layer if any and d outputs.

of the feature vectors are decorrelated. The MLP used
for NLDA probably decorrelates the parameters to ex-
tract a maximum of information matching the assump-
tion of diagonal covariance matrices. To verify this
assumption we compared the correlation coefficients of
RASTA-PLP parameters and NLDA parameters as fol-
lowing :

Let v be the complete feature vector (including deriv-
atives if any). For each HMM state, we computed the
correlation matrix between the coefficients of the fea-
ture vectors :

Oij

p = [pi;] [Uio'j] (3)

where 045 = E[(v(i) — p(é))(v(j) — p(5))] and 0; =

v oii. To facilitate the comparison of correlation matri-

ces, we computed the value r related to the correlation
matrix by :

N N
r= Z Z P?j (4)
i=1 j=1

where N is the feature vector dimension. This value
gives us an idea of the global correlation between the
coeflicients of a feature vectors. In figure 3 we com-
puted the global correlation of the feature vector coef-
ficients (RASTA-PLP for solid line and NLDA for dot-
ted line) corresponding to each phoneme model. This
figure shows that global correlations for RASTA-PLP
and NLDA parameters are almost the same. This is
quite interesting since NLDA parameters are extracted
from several context frames. This indicates that NLDA
is able to extract parameters incorporating context in-
formation while keeping global correlation at the same
level as for one RASTA-PLP feature vector.

In a second set of experiments, we trained neural
network directly on NLDA parameters, again with some
context frames (9 frames except for the 64 components
NLDA vector where we used 5 context frames). Re-
sults with these hybrid recognizers also show improved
performance especially for the second test set. However
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Figure 3: MLP with two hidden layers

Recognizer Rec. rate (%) | Rec. rate (%)
Test set 1 Test set 2
Baseline 21 % 8.0 %
NLDA 234-300-26-47 1.8 % 6.5 %
Rec 234-600-47
NLDA 234-300-38-47 1.9% 6.7 %
Rec 342-600-47
NLDA 234-300-64-47 1.8 % 6.7 %
Rec 320-600-47
Table 2: Recognition results wusing a hybrid

HMM/MLP recognizer. NLDA a — b — ¢ — d gives the
topolgy of the MLP used to extract the NLDA para-
meters while Rec @ — b — ¢ gives the topology of the
MLP used for probability estimation.

improvements are not so important as for the CDHMM
probably because both MLP (used for NLDA, and for
probability estimation) are trained with the same cri-
terion. Improvements could result from a better mod-
elization of the context since the probability estimator
accounts for some context of the discriminant features
that are themselves extracted from some acoustic con-
text. It is interesting to note that increasing the con-
text (more than 90 ms) for the baseline recognizer never
led to better performance. Also increasing the number
of hidden nodes (to 1,000) for the baseline did not de-
crease the error rate.

It is interesting to note that improvements gener-
ated by NLDA parameters are quite independent of the
size of feature vectors : quite similar results have been
achieved for 26, 38 and 64 components vectors.

6. CONCLUSIONS

After highlighting some weaknesses of the classical lin-
ear discriminant analysis, this paper presents a method
for performing nonlinear discriminant analysis by tak-
ing benefit of the nonlinear discriminant properties of
the MLP.

The NLDA has been tested on small and medium
vocabulary, task independent recognition experiments.
Recognition results show that the nonlinear discrimi-
nant analysis offers an efficient way of computing dis-
criminant parameters leading to reduction of the rela-
tive error rate up to 25 % for the CDHMM and up to
20 % for hybrid HMM/ANN systems.
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