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ABSTRACT

Recently there has been much work done on how to trans-
form HMMs, trained typically in a speaker-independent
fashion on clean training data, to be more representative
of data from a particular speaker or acoustic environment.
These transforms are trained on a small amount of train-
ing data, so large numbers of components are required to
share the same transform. Normally, each component is
constrained to only use one transform. This paper ex-
amines how to optimally, in a maximum likelihood sense,
assign components to transforms and allow each compo-
nent, or component grouping, to make use of many trans-
formations. The theory for obtaining both “weights” for
each transform and transforms given a set of weights is
given. The techniques are evaluated on both speaker and
environmental adaptation tasks.

1. INTRODUCTION

There has been much work done on how to improve speech
recognition performance in new acoustic environments or
for new speakers. A currently popular technique is to
transform the clean, speaker-independent, model parame-
ters [5, 3, 4] to be more representative of the new environ-
ment or speaker. These transforms may be linear [4] or
non-linear [1, 3]. Furthermore they may either be based
on some assumptions about the acoustic environment [3],
or by training a set of transforms on some adaptation

data [5, 4].

When modifying the models using adaptation data, there
is generally too little data to independently adapt each
component so many components share the same trans-
form. Typically each Gaussian component of an HMM-
based speech recognition system will be associated with
one particular transform and its parameters modified ac-
cordingly. This paper examines the problem of how to
use many transforms, or “experts”, to yield an improved
adaptation scheme. The task is to combine these multi-
ple experts, in this case transforms of the mean for model
compensation, in a sensible fashion. A simple linear com-
bination scheme is proposed here, where the final estimate
is a linear combination of the output of each of the experts.
This is referred to as transformation smoothing. The prob-
lem of estimating the weight for each expert is approached
using maximum likelihood (ML) estimation. In addition,
techniques for estimating the expert parameters given a
set of weights will be described.

A simple example of combining experts has previously
been proposed [1] where a particular set of components
is transformed by a combination of a linear and a non-
linear transformation. Each set of components uses one of
these combined transforms for adaptation. This concept
is extended here to allow each set of components to use an
arbitrary number of linear and non-linear transforms for
adaptation.

Preliminary experiments on transformation smoothing are
detailed. Two smoothing approaches are examined. First,
the technique is used to generate a “soft” regression tree
for speaker adaptation, so that components make use of
all the available transforms. The scheme is contrasted
with standard “hard” regression trees. Second the use of
smoothing at run-time is examined.

2. TRANSFORMATION SMOOTHING

The scheme chosen here for combining the experts is a
linear one. Only adaptation of the means of the Gaussian
components will be considered, thus
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where (™" = F,(u(™), is the estimate of the mean gen-

erated from the r** expert, X is the R x 1 weights vector
and

Given this transformation scheme it will be necessary to
estimate the weights vector for a set of transforms, or the
set of transforms given the weight vectors. Typically there
is insufficient data to estimate either experts or weights
for each individual component. Therefore Gaussian com-
ponents are grouped into base classes, all components of
which are assumed to be transformed in a similar way, ie
the weight vector is the same.

2.1. Estimating the Weights

The task is to find the ML estimate of the elements of
the weights vector A, given a set of experts, either linear
or non-linear. The standard auxiliary function is used to
optimise this, given the component alignment of each ob-
servation with a particular state. Details of the derivation
are in [2]. The weights vector for base class 7, AY) is

A0 = Z()-1,0) (3)
where row r of the R x R matrix, Z) is defined as
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and element r of the R x 1 vector v¥¥) is defined as
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with v (7) = p(gm(7)|oT), gm(7) denotes occupation of
component m at time 7 and MY is the number of compo-
nents associated with base class j. Notice this has made
no assumption about the nature of the transformation,
solely that each expert generates an estimate of the new
mean.



2.2. Estimating the Transforms

Given a set of weights it is possible to train both linear
and non-linear transformations.

Linear Transformations : Consider the general linear

mean transformation, maximum likelihood linear regres-
sion (MLLR) [4], combined with smoothing

R R
A= ALMIWOLDZS T Z6m (A0 L p0)  (6)

r=1 r=1
where £ (™) is the extended mean vector. In [2], it is shown

that all the linear transforms may be simultaneously op-
timised by solving the following expression
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D = g™ e™T and component m belongs to base class
bm. It is simple to see that when “hard” weights are used,
ie only one element of the weight vector is non-zero and
equal to one, then equation 7 simplifies to the standard
MLLR estimation equation.

Non-Linear Transformations : A simple closed form
expression is not normally possible when training non-
linear transforms. Instead an iterative procedure must
be used whereby each transform is individually optimised.
Typically, the training of the non-linear transform is based
on the generalised EM algorithm [1]. However, now in-
stead of training on o(7), the transform F.(u) is trained
on o™ (7) for those frames assigned to component m,
where

o™ (r) =o(r) = 3 _ APmIplm? (11)
pFT

The same routine may be used to train the linear trans-
formations [2]. Thus instead of requiring the inverse of an
(Rx (n+1)) by (Rx (n+1)) matrix, it is an iterative so-
lution where each iteration involves R inversions of (n+1)
by (n + 1) matrices.

If linear and non-linear transformations are to be com-
bined then an iterative procedure is required. The linear
transforms may be optimised given the current non-linear
transforms and so on.

3. IMPLEMENTATION OPTIONS

3.1. Regression Tree Training

One particular implementation of transformation smooth-
ing is to generate an optimal, in the sense of maximising

the likelihood, regression class tree for use with MLLR [4].
As the amount of adaptation data is unknown when decid-
ing on the base classes a regression class tree may be used
to group these base classes into hierarchical regression
classes. The regression tree and base classes are usually
determined using expert knowledge or assuming that com-
ponents that are “close” in acoustic space belong to the
same base class. Figure 1 shows a simple regression class
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Figure 1: A binary regression class tree

tree. This is a binary tree, with two regression classes, 7o
and r3 and associated transforms W® and W®, Each of
the four base classes (cs,cs, cs,c7) is assigned in a “hard”
fashion to one of regression classes.

Transformation smoothing allows two improvements over
the standard regression class tree. First, there is no “hard”
allocation of base class to one particular regression class,
each base class can make use of all available transforms.
Second, the allocation of base classes to regression classes
is based on optimising the likelihood of some regression-
tree building data, rather than the standard “closeness”
in acoustic space measure. Each base class will now have
a weight vector associated with it.

The training of a simple two regression class tree is as
follows. The tree is initialised using standard acoustic
clustering schemes. For each speaker in the training data
transforms W) and W are trained. Using these trans-
forms the weight vector for each of the base classes is learnt
over all speakers. Given these new weight vectors new
transforms are learnt and the whole process may be re-
peated. At each stage the likelihood of the training data
is guaranteed not to decrease. Thus the transforms for
each speaker are determined using equation 7, with the
summation over time running to T for speaker s and
the “weights” of the tree are determined by
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and p(™) = F, (u{™), r, indicates transformation r of
speaker s. Equations 4 and 5 become
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Hgnoring all terms that are independent of the regression
tree.
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The obvious problem with the use of soft weights is that
as the amount of data, hence use of regression class tree, is
not known a-priori it is necessary to learn weights for every
single allowable combination of transforms that could be
generated from the tree. One way around this problem is
to restrict the number of transforms that can be used at
each level. There are a variety of implementations that
could be used. For this paper only a simple one level
binary tree is considered, so the problem does not arise.

It is not necessary to generate “soft” weights in order to
obtain regression trees based on maximise the likelihood.
“Hard” weights may be learnt in a similar fashion [2].
Here the transform that yields the highest average aux-
iliary function value is chosen. Thus
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where Q;S)(M,/\}Hr) has a similar form as equation 13.
This is again guaranteed to increase the likelihood of the
adaptation at each iteration, though is very susceptible to
ending up at local maxima. However, “hard” weights have
the advantage that they allow a standard tree to be built
in a top down fashion.

3.2. Run-Time Smoothing

The previous section has described how a “soft” regression
class tree may be generated for all speakers. An alterna-
tive approach is to calculate a set of weights for a speaker
given a particular set of transforms calculated on the adap-
tation data for that speaker. This has the advantage that
a specific transformation smoothing is performed for each
speaker, rather than averaged over all training speakers.
However, it is now also necessary to ensure that the set of
weights for each speaker is robustly estimated. This again
may be achieved using a regression tree. It is possible to go
further down this weights tree, since less data is required
to estimate the weights than to estimate the transforms
themselves. However the need to robustly estimate the
weights is a disadvantage of the run-time smoothing as the
depth to which it is sensible to go in the regression class
tree is a function of the amount of adaptation data. This
is in contrast to using smoothing to generate the original
regression class tree, where each of the base classes has
a different weight vector associated with it. In the same
way as the global class weight estimation, this may be it-
erated with new transforms estimated, then new weights
estimated. In practice iterating was found to give little
difference in performance and is not used in this work.

3.3. Environmental Smoothing

A common problem in speech recognition is dealing with
varying acoustic environments. One approach to such sit-
uations is to generate a set of “transforms” for a set of
acoustic conditions. At test time the most appropriate
acoustic condition is selected. Normally it is not possi-
ble to build models of all acoustic environments so the
resolution of environments may not be as fine as would
be desirable. Instead of making a hard decision, selecting
one environment, or performing some ad-hoc combination
of environments, it is possible to smooth the environment

transform in a ML fashion?. The optimisation is very
similar to that of transformation smoothing, however now
there is only one weight vector of dimensionality £ x 1 for
the F acoustic environments. The environment weights,
A are determined by

A =771y (17)

where row e of the F X E matrix, Z is defined as
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and p™e) = F, (u™), r. indicates transformation r

of acoustic environment e. The cost of calculating the
weights is simply the inversion of an e X F matrix.

4. EXPERIMENTS

The HTK standard large vocabulary speech recognition
system was used to compare the performance of the var-
ious Gaussian selection schemes. This was configured
as a gender-independent cross-word-triphone mixture-
Gaussian tied-state HMM system identical to the “HMM-
1” model set used in the HTK 1994 ARPA evaluation
system [7].

The data used for evaluation were the ARPA 1994 H1
development and evaluation test sets. This is an unlimited
vocabulary task recorded in a clean environment. A 65k
word list and dictionary were used with a trigram language
model.

For the experiments here block-diagonal mean transfor-
mations were used, trained in a static unsupervised adap-
tation mode. A simple single-level tree, ie two regression
classes, was trained with the Gaussian components split
into 750 base classes determined by acoustic clustering.

4.1. Regression Tree Generation

A subset of the acoustic training data, 25 sentences from
each of the 284 speakers, were used to train the regression
tree ie the weight vectors for each base class. In addition
to training a “soft” regression tree, a “hard” assignment of
base classes to regression class was also performed. This
is where [0,1] weights are learnt from the training data for
each base class using equation 16. These trees were then
used to generate the transforms for the test data.

Figure 2 shows the auxiliary function value for these two
cases as a function of iteration during training of the trees.
As expected in both cases the value always increased with
iteration number. The “hard” weights were trained un-
til convergence at which point 17% of the components
had changed base-class and the average auxiliary func-
tion value per frame had increased from -61.54 to -61.46.
The “soft” weights showed far greater increases in auxil-
iary function value, ending up at —61.39. This illustrates
that extensive use is being made of the “soft” weights.

2For this work it is assumed that the environment trans-
forms only relate to the means. Variance adaptation for each
environment is not performed.
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Figure 2: Auxiliary function value against iteration.

Cluster Avg. Like. Error Rate (%)
HI Dev | H1 Eval || HI Dev | HI Eval

— -68.732 | -68.789 9.57 9.20

Global -66.753 | -66.762 8.49 8.30

Acoustic || -66.527 | -66.536 8.39 8.21

Hard -66.443 | -66.451 8.20 8.22

Soft -66.351 | -66.348 8.29 8.23

Table 1: Error Rate (%) on the ARPA H1 data

Figure 2 illustrates that the standard acoustic clustering
may not yield an optimal partitioning of the data. How-
ever it does not necessarily mean that the recognition per-
formance improves. Table 1 shows the performance of var-
ious schemes: Global used a single transformation; Acous-
tic indicates the two-class baseline regression tree built
clustering in acoustic space; Hard is the tree with [1,0] as-
signments of base classes; and Soft uses the weight vectors.
From these results there is little difference in recognition
performance between the various schemes. However, the
likelihood of the test data and auxiliary function values
were higher for the “soft” trees than the other schemes.
This indicates that the use of transformation smoothing
does, even in this simple two transform case, improve the
ability of the regression tree to model the adaptation data.

Preliminary experiments on the ARPA 1994 S5 task, a 5K
unknown microphone task, showed slight gains using the
soft regression, 7.09%, compared to the standard acous-
tic regression tree 7.34% and the hard clustering 7.27%
(see [6] for details of models used).

4.2. Run-Time Smoothing

An alternative to using smoothing when generating the
regression tree is to use it during recognition. Here a set
of transforms for a speaker are generated using the current
regression class tree. These transforms are then smoothed.
Table 2 shows the performance of such a scheme. The

Clustering Error Rate (%)
HI1 Dev | H1 Eval

Acoustic 8.39 8.21

Run-Time 8.27 8.21

Table 2: Error Rate (%) on 1994 H1 development and

evaluation data using run-time fuzzy clustering

standard acoustic regression tree was used to generate
the initial transforms. The thresholds for the smoothing
weights estimates were empirically set on a similar task.

Little gain in performance was again observed.

5. CONCLUSIONS

This paper has described how transforms, or experts, ei-
ther linear or non-linear, may be combined in a maxi-
mum likelihood fashion. A simple linear combination is
used and it is shown how the weights of the combination
may be trained, given a set of transforms. Furthermore,
if the weights are given the transforms may be trained.
A variety of ways of using this transformation smooth-
ing are described. Tt may be used to generate optimal
regression trees. Instead of using ad hoc methods to
generate a regression tree, weights are assigned to each
base-class so that the training data likelihood is max-
imised. Alternatively, the weights may be optimised at
run-time for the particular speaker, or it may be used to
smooth acoustic environments. Preliminary experiments
using this smoothing scheme to generate a simple “soft”
regression class tree for speaker adaptation are described.
The use of this soft tree improved the adaptation scheme
in terms of the auxiliary function on the independent test
data. In terms of recognition performance, though, there
was little difference between this and the standard acoustic
tree. The same was observed for the run-time smoothing.

Future work will involve more complex “soft” trees and
environmental adaptation. In addition, the combination
of both linear and non-linear transformations will be ex-
amined.
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