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ABSTRACT

The recognition accuracy in recent large vocabulary Au-
tomatic Speech Recognition (ASR) systems is highly re-
lated to the existing mismatch between the training and
test sets. For example, dialect di�erences across the train-
ing and testing speakers result to a signi�cant degrada-
tion in recognition performance. Some popular adapta-
tion approaches improve the recognition performance of
speech recognizers based on hidden Markov models with
continuous mixture densities by using linear transforms to
adapt the means, and possibly the covariances of the mix-
ture Gaussians. In this paper, we propose a novel adap-
tation technique that adapts the means and, optionally,
the covariances of the mixture Gaussians by using multi-
ple stochastic transformations. We perform both speaker
and dialect adaptation experiments, and we show that
our method signi�cantly improves the recognition accu-
racy and the robustness of our system. The experiments
are carried out with SRI's DECIPHERTM speech recog-
nition system.

1. INTRODUCTION

The mismatch that frequently occurs between the train-
ing and testing conditions of an automatic speech rec-
ognizer (ASR) can be e�ciently reduced by adapting
the parameters of the recognizer to the testing con-
ditions. Recently, a family of adaptation algorithms
for large-vocabulary continuous-density hidden-Markov-
model (HMM) based speech recognizers have appeared
that are based on constrained reestimation of the distri-
bution parameters [3, 6, 9]. In these approaches, all the
Gaussians in a single mixture, or a group of mixtures, if
there is tying of transformations, are transformed using
the same linear transformation.

The linear assumption, however, may be too restric-
tive and inadequate in modeling the characteristics of the
testing conditions. In this paper, we introduce a new
adaptation method for continuous-density HMMs that is
based on a more complex transformation of the Gaussians,
which consists of a collection of piecewise-linear transfor-
mations that are shared among all the Gaussians in each
mixture. The transformation for each Gaussian is selected
probabilistically, based on weight probabilities that are
trained from the adaptation data. We evaluate our new
method using SRI's DECIPHERTM speech recognition
system on dialect and speaker adaptation experiments.

2. ADAPTATION USING A LINEAR

TRANSFORMATION

Recently developed fast adaptation algorithms [3, 6, 9]
for continuous mixture density HMMs are based on con-
strained reestimation of the mixture Gaussians. Maxi-
mum likelihood reestimation of the Gaussians in all these
adaptation schemes is performed using the expectation-
maximization (EM) algorithm.
The observation densities of the speaker-independent

(SI) speech recognition system in continuous mixture-
density HMMs have the following form:

PSI(ytjst) =

N!X
i=1

p(!ijst)N(yt;msti; Ssti); (1)

where N(yt;msti; Ssti) denotes the multivariate normal
density with mean vectormsti and covariance matrix Ssti.
These models need large amounts of training data for

robust estimation of their parameters. However, given
a small amount of training data that match the testing
conditions, the initial SI system can be adapted to new
conditions, like the speaker, channel, or the dialect. In
[3], it is assumed that the vector process [xt] of the mis-
matched testing condition can be obtained through a se-
quence of linear transformations (Ast; bst) from a corre-
sponding process [yt] that matches the training popula-
tion:

xt = Astyt + bst : (2)

The transformation used at each time t depends on the
underlying HMM state st, in which case the observation
densities of the adapted models can be written:

PA(xtjst) =

N!X
i=1

p(!ijst)N(xt;Astmsti+ bst ;AstSstiA
T
st);

(3)
where AT denotes the transpose of a matrix. In [6],
the linear constraint is only applied to the means of the
adapted observation densities, which become

PA(xtjst) =

N!X
i=1

p(!ijst)N(xt;Astmsti + bst ; Ssti): (4)

Closed-form solutions for the reestimation formulae of
method (3) can be derived in the case of diagonal transfor-
mation and covariance matrices. The reestimation formu-
lae for (4) are simpler, can be used for full transformation
matrices, but do not adapt the covariances of the Gaus-
sians. A comparative study of these two approaches was
done in [7].



3. ADAPTATION USING MULTIPLE

STOCHASTIC TRANSFORMATIONS

The linear assumption may not adequately model the de-
pendency between the training and testing conditions.
For example, it may be too simplistic to assume that the
mapping between the observation spaces of a new speaker
and the speakers in the training population is linear, even
when we are looking only at the observations of a partic-
ular group of HMM states. An alternate to the determin-
istic linear transformation described in equation (2), is to
use for an observation drawn from the i-th Gaussian of a
particular HMM state st a probabilistic, piecewise linear
transformation of the form:

xt =

8>>>><
>>>>:

Ast1yt + bst1;with probability p(�1jst; !i) = l1
Ast2yt + bst2;with probability p(�2jst; !i) = l2

...
AstN�

yt + bstN�
;

with probability p(�N�
jst; !i) = lN�

(5)
where N� is the number of component transformations
used by each HMM state, l1 + l2 + : : : + lN�

= 1; and
lj � 0; j = 1; : : : ;N�. The random variable �j is the index
of the transformation that is used at each time, and the
component transformations Astj; bstj for j = 1; : : : ;N�

are shared by all the Gaussians used by state st. The
probabilities p(�j jst; !i) that select the j-th transforma-
tion at time t for the i-th Gaussian of the HMM state st,
however, are speci�c to each Gaussian in the mixture.
Let us consider adaptation using a complex transfor-

mation consisting of N� component transformations. The
adapted observation densities of the HMM-based speech
recognizer will then have the following form:

PA(xtjst) =

N!X
i=1

N�X
j=1

p(�j jst; !i) p(!ijst)

�N(xt;Astjmsti + bstj ;AstjSstiA
T
stj):(6)

Alternatively, if we choose to apply the transformations
only to the means of the Gaussians, as in equation (4),
then the adapted observation densities will be:

PA(xtjst) =

N!X
i=1

N�X
j=1

p(�j jst; !i) p(!ijst)

�N(xt;Astjmsti + bstj; Ssti): (7)

In either case, the parameters that must be estimated
from the adaptation data for each HMM state include
the transformation parameters Astj; bstj; j = 1; : : : ;N�

and the transformation probabilities, p(�jjst; !i); j =
1; : : : ; N�; for each Gaussian in the mixture, i =
1; : : : ; N!. In [1] we show that these parameters can be
estimated using the EM algorithm. The proof is based
on the maximization of the following auxiliary function
at each EM iteration:

�n = argmax�Eflog f(X ;Zj�)jX ; �og

where �o are the model parameters of the previous itera-
tion, X is the set of the observation data samples xk and
Z denotes the set of the corresponding unobserved data
zk which consists of the HMM states, the set of mixture
indices !i�
 and the set of the component transforms'
indices �j��.

The training procedure can then be summarized as fol-
lows:

� Initialization: Initialize all transformation parame-
ters Astj , bstj and p(�j jst; !i). For our experiments,
we set Astj = I, where I is the identity matrix, and
bstj = hj 
 sst where 
 represents the element-wise
product of two vectors, sst is a vector with elements
the standard deviations of the observation vector for
state st, hj is the j-th column of a d� d Hadamard
matrix, and d is the dimension of the o�set vector
bstj. Finally, we initialize the weight probabilities
with p(�j jst; !i) = 1=N�.

� E-step: Perform one iteration of the forward-
backward algorithm on the speech data, us-
ing the adapted Gaussians with the current

value of the transformation parameters �
(k)
st =

[A(k)

stj
; b
(k)

stj
; p(k)(�jjst; !i);8j = 1; : : : ; N�;8i =

1; : : : ;N!] where k is the iteration index. Collect the
su�cient statistics as de�ned below:

nstij =
X
t

�(st)�i(st) ij(st) (8)

��stij =
1

nstij

X
t

�(st)�i(st) ij(st)xt (9)

��stij =
1

nstij

X
t

�(st)�i(st) ij(st)

�(xt � ��stij)(xt � ��stij)
T (10)

where �(st) = p(stjX ; �
(k)) is the probability of being

at state st at time t given X and the current HMM
parameters �(k) and is computed by the forward-
backward recursions. The posterior probabilities

�i(st) = p(!ijxt; st; �
(k)
st ) (11)

 ij(st) = p(�j j!i; xt; st; �
(k)
st ) (12)

can be computed using Bayes rule.

When the transformation is applied only to the
means of the Gaussians, then only the �rst order
statistics given in equations (8) and (9) have to be
computed, since the covariance remains the same
through the iterations.

� M-step: Compute the new transformation pa-
rameters and component transformation probabil-

ities [A(k+1)

stj
; b
(k+1)

stj
;p(k+1)(�jjst; !i)]. The compo-

nent transformation probabilities are calculated from
the quantity:

p(k+1)(�jjst; !i) =
nstij

N�X
j=1

nstij

: (13)

For diagonal covariances Ssti and transformation ma-
trices Astj,

Ssti = diag(s2sti1; s
2
sti2; : : : ; s

2
stid)

Astj = diag(astj1; astj2; : : : ; astjd)

bstj = [bstj1; bstj2; : : : ; bstjd]
T

msti = [msti1;msti2; : : : ;mstid]
T

��stij = diag(��2stij1; ��
2
stij2; : : : ; ��

2
stijd)

��stij = [��stij1; ��stij2; : : : ; ��stijd]
T
;



where d is the dimension of the observation vectors,
the maximization step is equivalent to solving the
following set of equations 8h = 1; : : : ; d, in addition
to reestimating the transformation probabilities from
(13), 

N!X
i=1

nstij

!
a
2
stjh

�

 
N!X
i=1

nstij

s2
stih

!
b
2
stjh

�

 
N!X
i=1

nstijmstih

s2
stih

!
astjhbstjh

+

 
N!X
i=1

nstij ��stijhmstih

s2
stih

!
astjh

+

 
2

N!X
i=1

nstij ��stijh
s2
stih

!
bstjh

�

 
N!X
i=1

nstij
��2stijh + ��2stijh

s2
stih

!
= 0 (14)

where the o�set bstjh is given by:

bstjh =

N!X
i=1

nstij(��stijh �mstihastjh)

s2stih

N!X
i=1

nstij

s2stih

: (15)

In the general case, when the covariances and trans-
formations are full matrices, we can use iterative
schemes to solve a system of second order equations
[3].

When the transformation is applied only to the
means of the Gaussians, then the maximization step
involves the computation of the component transfor-
mation probabilities p(�j j!i; �) from equation (13)
and the transformation parameters which is now
equivalent to solving the following system of equa-
tions [1]:

N!X
i=1

nstijS
�1
sti

[Astjmsti + (bstj � ��stij)]m
T
sti = 0 (16)

bstj =

 
N!X
i=1

nstijS
�1
sti

!
�1

�

 
N!X
i=1

nstijS
�1
sti

[��stij � Astjmi]

!
(17)

� if another iteration go to E-step.

The adapted mixture densities in equations (6) and (7)
using the multiple stochastic transformations consist of
N�-times as many Gaussians as the original, SI observa-
tion densities, which means that the adapted system will
require additional computation during recognition. This
can be avoided if we constrain the transformation proba-
bilities:

p(�j jst; !i) =

(
1 for the transformation with

the highest probability,
0 elsewhere,

(18)

which means that we only apply the transform with the
highest probability to each Gaussian.

4. EXPERIMENTS

We have tested our new algorithm in dialect adaptation
experiments, trying to develop a multi-dialect SI speech
recognition system for the Swedish language which will re-
quire only a small amount of dialect-dependent data. We
use the Swedish language corpus collected by Telia, and
the recognizer used in a bidirectional speech translation
system between English and Swedish that has been de-
veloped under the SRI-Telia Research Spoken Language
Translator project [8]. We have also evaluated our al-
gorithm in speaker adaptation experiments based on the
\spoke 3" task of the large-vocabulary Wall Street Jour-
nal (WSJ) corpus [5]. The goal of this task is to improve
recognition performance for nonnative speakers of Amer-
ican English.

4.1. Dialect Adaptation Experiments

For our dialect adaptation experiments we used data from
the Stockholm and Scanian dialects, that were, respec-
tively, the seed and target dialects. There is a total of
40 speakers from the Scanian dialect, both male and fe-
male, and each of them recorded more than 40 sentences.
We selected 8 of the speakers (half of them male) to
serve as testing data and the rest composed the adap-
tation/training data with a total of 3814 sentences. Ex-
periments were carried out using SRI's DECIPHERTM

system [4]. The system's front-end was con�gured to out-
put 12 cepstral coe�cients, cepstral energy and their �rst
and second derivatives. The cepstral features are com-
puted with a fast Fourier transform (FFT) �lterbank and
subsequent cepstral-mean normalization on a sentence ba-
sis is performed.
The SI continuous HMM system which served as seed

models for our adaptation scheme, was a phonetically-
tied mixture (PTM) system [4] trained on approximately
21,000 sentences of Stockholm dialect. The system's
recognition performance on an air travel information task
similar to the English ATIS one was benchmarked at a
8.9% word error rate using a bigram language model when
tested on Stockholm speakers. On the other hand, its
performance degraded signi�cantly when tested on the
Scanian-dialect testing set, reaching a word error rate of
25.08%.
In previous work [2], we adapted the Stockholm-dialect

system using equation (3) with diagonal transformations
(method I) and equation (4) with structured transforma-
tions (method II). The transformation matrices in method
II are block diagonal matrices, with three blocks that per-
form a separate transformation to every basic feature vec-
tor (cepstrum, and its �rst and second derivatives). The
results are summarized in Table 1 for 198 and 520 adapta-
tion sentences, and we found that method II outperformed
method I because of the more complex transformations
that allowed rotation, in addition to scaling and shift-
ing. These results were consistent with similar �ndings
on speaker-adaptation experiments reported in [7].
The results of our new method are also summarized in

Table 1 for di�erent numbers of component transforma-
tions. We used multiple diagonal transformations applied
to both the means and covariances, as in (6). We see
that even with as few as two component transformations,
we get a performance improvement over methods I and
II. When more component transformations are used, the



Parameters Word Error Rate %

per 198 train. 520 train.
transform sentences sentences

Method I 78 15.5 13.3
Method II 546 13.7 12.6

Stochastic
N� = 2 156 13.3 12.1
N� = 3 234 13.0 10.8
N� = 4 312 13.2 10.2
N� = 5 390 12.3 10.0
N� = 6 468 12.8 10.2

Table 1. Number of adaptation parameters per

mixture and dialect-adapted word-error rates for

linear transformations (methods I and II) and

multiple stochastic transformations with 2-6 com-

ponent transformations.

new multiple stochastic transform method gives signi�-
cantly better results than the previous approaches, with
the best performance achieved for �ve transformations.
The word error rate for 198 adaptation sentences is re-
duced by 21% and 10% over methods I and II, respec-
tively. For 520 adaptation sentences, the word error rate
is reduced by 25% and 21% over methods I and II, respec-
tively, although the number of adaptation parameters is
smaller than those used in method II.

4.2. Speaker Adaptation Experiments

For the speaker adaptation experiments we used the
DECIPHERTM system on the \spoke 3" task of the large-
vocabulary Wall Street Journal (WSJ) corpus [5]. The
speaker-independent, continuous HMM systems that were
used as seed models for adaptation were gender depen-
dent, trained on 140 speakers and 17,000 sentences for
each gender. Each of the two systems was phonetically
tied, having 12,000 context-dependent phonetic models
that shared 100 Gaussians speci�c to each center phone.
We used the 5,000-word closed-vocabulary bigram lan-
guage model provided by the MIT Lincoln Laboratory,
and the 1994 development set that consists of six female
and 5 male speakers, each one of them speaking 40 pho-
netically rich adaptation sentences. The test set consisted
of 11 speakers and 20 sentences per speaker.
The speaker-independent word-error rate for this test

set is 29.06%. We evaluated our new method for 10, 20
and 40 stochastic transformations. Each of the stochastic
transformations was used to adapt the Gaussians of all al-
lophone states clustered in each of 10, 20 and 40 groups,
respectively, that corresponded to one of the stochastic
transformations. We used diagonal component transfor-
mations applied to both the means and the covariances
(6), and the number of component transformations in
each stochastic transformation varied from 1 (in which
case our new method simply reduces to method I) to 8.
The results are summarized in Table 2. We see that with
as few as 2 component transformations there is a signi�-
cant improvement in recognition performance, compared
to method I. The improvement becomes more obvious as
we use more component transformations. The best perfor-
mance is achieved for 8, 6 and 6 component transforma-
tions reducing the speaker-independent word-error rate
by 38.8%, 40.8% and 42.2% when 10, 20 and 40 trans-
formations are used, respectively. The improvement in

Component Word Error Rate %

Transforms 10 trans. 20 trans. 40 trans.

1 (method I) 23.2 20.7 19.5
2 21.4 18.8 18.5
3 19.9 19.0 17.9
4 19.1 17.7 17.7
5 18.4 18.1 17.5
6 17.9 17.2 16.8
7 18.2 17.5 17.1
8 17.8 17.4 17.3

Table 2. Speaker-adapted word-error rates for

several numbers of stochastic transformations

consisting of 1 (method I) up to 8 components.

performance over method I is 23.3%, 16.9% and 13.8%
for 10, 20 and 40 stochastic transformations, respectively.
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