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ABSTRACT

Hidden Markov model (HMM) adaptation is currently
of interest, to overcome the degradation effect of speaker
and/or channel mismatches in practical speech recognition
systems. The Bayesian framework provides a theoretically
optimal formulation for combining adaptation data and
prior knowledge, but it suffers from the drawback of be-
ing incapable of adapting parameters of the models that
have no observations in the adaptation speech. In this
article we present a new predicitve (in the sense of influ-
encing unobserved distribution parameters) adaptation al-
gorithm for the mean vectors of an HMM. We also point
out some theoretical relationships between the proposed
method and other techniques used in the context of pre-
dictive model adaptation. The efficacy of the proposed ap-
proach is demonstrated in speaker adaptation experiemnts
for both an isolated word task, and TIMIT phonetic recogn-
tion.

1. INTRODUCTION

The performance of hidden Markov model based speech rec-
ognizers may degrade significantly when a mismatch occurs
between their training and testing environments. This mis-
match is often encountered in practice, and can be due to
speaker and/or channel difference. It has been shown that
adapting the model parameters using some data observed
in the test environment, is an effective way to overcome this
degradation. The Bayesian framework provides a theoreti-
cally optimal formalism for the combination of both adap-
tation data and prior knowledge, and hence it enables ob-
taining robust parameter estimates from limited adaptation
data (e.g. [4]). However, a major drawback of this approach
is its incapability of influencing parameters of the models
that have no observations in the adaptation speech. Hence,
for very short calibration speech, Bayesian techniques will
only adapt a small fraction of the system parameters, and
the need arises for predictive adaptation algorithms that
can potentially estimate parameters not observed in the
adaptation data.

Recently several predictive model adaptation techniques
were proposed, where predictive refers to their ability of
adapting parameters for which there exist no adaptation
data. These techniques can be broadly classified as being
Bayesian or transformation based. Bayesian techniques use
extended maximum aposteriori (EMAP) estimation where

a joint prior distribution is adopted in a MAP framework
[6, 11]. Also some interesting approximations to the joint
prior were recently proposed, using pairwise correlations [5],
and using Markov random fields [8]. On the otherhand,
tranformation based algorithms either use a set of linear
transformations trained to predict target distributions from
a set of source distributions during adapation [3, 1], or esti-
mate unobserved distributions means by utilizing the trans-
fer vectors of distributions in their neighbourhoods [9, 10].

Generally, the application of an exact EMAP algorithm
to a system having even moderate number of parameters is
prohibitive both from the computation and storage points
of view. While transformation based methods are gener-
ally heuristic, and lack a well defined probabilistic criterion.
! In this article we present the theoretical foundations as
well as experimental evaluation of a new correlation based
predictive adaptation technique for the mean vectors of a
continuous density hidden Markov model. The basic idea
is to predict the mean of an unobserved distribution as a
combined estimate of a set of pairwise MMSE estimates us-
ing observed distribution means in its neighbourhood. We
also point out some relationships between this approach and
both the linear transformation, and the transfer vector field
methods.

The article is organized as follows. Section 2 presents the
basic principle of the technique, while Section 3 discusses
its application to HMM mean adaptation. Relationships
between the proposed method and both linear regression,
and transfer vector field adaptation are outlined in Section
4. Experimental evaluation and conclusion are given in Sec-
tions 5 and 6 respectively.

2. BASIC PRINCIPLES

In this section we give the basic principles of the proposed
method. The following discussion concerns the distribution
level, where speech is assumed to be properly aligned to
distributions using the Viterbi algorithm and a set of initial
models (e.g., for speaker adaptation, speaker independent
models). Also for simplicity we consider scalar observa-
tions, while the generalization to vector observations can be
trivially obtained. The basic idea of the proposed method
is to identify a neighbourhood (in correlation sense)with
each distribution. Then during adaptation pairwise MMSE

 In fact, we show in Section 4 that transformation based meth-
ods can be obtained from the proposed approach by making some
approximations.



estimates of the means of an unobserved distribution are
obtained from those obsereved ones in its neighbourhood.
Finally, a unique estimate of the mean is obtained by com-
bining the pairwise estimates in a ML sense.

Assume that two distribution means px and g; are jointly
normal, and that their joint distribution is given by
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where uf{l) is the speaker independent mean, aik(”) is the
variance, and ry; is the correlation coefficient.

The minimum mean square error (MMSE) estimate of py

given gy is given by [2]
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and its associated variance is given by
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As we don’t have perfect knowledge of p;, we use an es-
timate u), a MAP estimate is used in this work, which is
given by
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where Z; is the sample average of observations of {,N; is the
number of observations belonging to {, and 7 is a parameter
controlling the relative weight of the prior and the adapta-
tion data.

In this case the estimate of py given p; can be written as
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and it can be shown that its associated variance is given by
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where n; = , and Um, is the sample variance of distribu-

tion {. In thls Work we take T =1 = 5.0 VI.

To obtain a unique estimate of puxp we combine the set of
pairwise estimates in the neighbourhood (N(k)) of k. In
this work we use a maximum likelihood (ML) based combi-
nation given by
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Substituting (5) and (6) into (7), and after some simplifica-
tion we get

N(k TL O *
S — (f — ) /(1 =131 —

ll/( Tkl(

)

~ ST
He = pr” + TR
(Ny+7)
(8)

3. APPLICATION TO MODEL ADAPTATION

To perform mean prediction of distribution & using (8), we
need estimates of {ou,r I € N(k)}. These estimates can
be obtained using the moment method from a training set
consisting of N groups (e.g. speakers) as shown below.

N
1
= v 2@ —ul) (9)
=1

= S @i — ) F — i) (10)

\/Zl (i — uit \/Zz  ( ki — Ky

where 7; ; denotes the sample average of the I*" distribution
in the 1*" group.

The neighbourhood N (k) of distribution & is constructed
from the mostly correlated distributions (i.e those having
highest rg; Values). This neighbourhood construction pro-
cedure works for 1-dimensional observations, and a possible
measure of distribution correlation for P-dimensional vec-
tors can be calculated as:

Tkt = %Z ree(7)] (11)

where each ry;(j) in (11) is calculated as in (10). Possibly
phonetic knowledge, or any other constraints can be applied
to reduce the computational complexity of the neighbour-
hood construction process. However, no such attempt was
made in this paper.

3.1. Summary of the adaptation algorithm

Up to this point the discussion was carried out at the dis-
tribution level. The extension to HMMs is straightforward.
The distributions of all mixture components of all states
are considered as a large pool. During training (correla-
tion structure and parameter estimation), and adaptation
the speech is assigned to distributions using the the Viterbi
algorithm and a set of initial models. Once the speech is as-
signed to appropriate distributions, the algorithm proceeds
as described in the previous sections. A summary of the
training and adaptation algortihms is given below.

1. Training Phase

o Assign the training speech to distributions using
the Viterbi algorithm, and a set of initial models.

o Using the assigned speech , calculate the parame-
ters ok, and {rx; Vi} for each distribution k (equa-
tions (9)-(10)).

e For each distribution k construct the neighbour-
hood A (k) from the mostly correlated distributions
(those having highest ry; values).

2. Adaptation Phase

o Assign the adaptation speech to distributions using
the Viterbi algorithm and a set of initial models
(possibly speaker independent models).



e For distributions having observations use MAP es-
timation (4) to calculate their means.

o Use (8) to predict the means of unobserved distri-
butions from the means of observed distributions
in their neighbourhoods.

4. RELATIONSHIPS WITH EXISTING
APPROACHES

In this section we present some relationships between
the proposed algorithm and both vector field correlation
(VFC)[9], and linear regression prediction [3].

In (8) if we make the assumptions that distributions k

and [ are perfectly correlated (i.e. ri &= 1 and oxx = ou),

and that m; def n Vi, we get
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which is similar to vector field correlation [9].
Also in (8) if we make the assumption that (N; 4+ 1) >

(i.e. asymptotic case),and m def n=r1 VI, we get
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This is the average of a set of linear transformations
weighted by the factors 1/(1 — r%,), and is similar to that
used in linear regression based prediction [3]. In the latter
case the parameters of the linear transformation are esti-
mated using linear regression. It is well known that for the
normal assumption used in this paper the coefficients of the
linear transformations in (13) coincide with those obtained
using linear regression. However, the proposed approach al-
lows for more general distribution assumptions, that could
result in other estimates which are possibly nonlinear.

5. EXPERIMENTAL RESULTS

In this section we evaluate the proposed approach in speaker
adaptation for TIMIT phonetic recognition, and for a con-
fusable isolated word recognition database. In all the adap-
tation experiments, only the mean vectors are adapted, and
no attempt was made to adapt the variances or mixture
weights of the models.

5.1. TIMIT phonetic recognition

48 phone models representing 39 classes as in [7] are used.
Each phone is modelled by a 3 state left to right HMM.
The feature vector consists of 12 MFCC with cepstral mean
normalization applied at the sentence level. There are 3696
sentence from 462 speakers in the training set. The test set
consists of 192 sentences from 24 speakers (core test set).
No phone grammar is used in the test. The 2 SA sentences
of each test speaker are used for adaptation. The baseline
recognition system is implemented using HTK. 16 speaker

groups corresponding to male and female speakers in 8 di-
alect reigons are used to estimate the correlation structure
(as in equations (9)-(10)) .

Phone recognition results (% correct) for the speaker inde-
pendent system (SI), conventional MAP adaptation (MAP),
and MAP adaptation in conjunction with correlation based
prediction, for neighbourhood size 8 (CMAPS8), and neigh-
bourhood size 4 (CMAP4) are shown in Table 1. The three
rows of the table show results for mixture size 1,2, and 4
respectively.

Mixture SI MAP | CMAP4 | CMAPS8
size
1 47.42 | 49.65 49.99 49.95
2 47.53 | 50.21 50.87 51.03
4 47.73 | 50.30 50.13 50.20
Table 1. Percent correct phonetic recognition results on

TIMIT database. For speaker indpendent (SI) models, speaker
adapted models using MAP adaptation (MAP), and speaker
adapted models using MAP adaptation in conjunction with
correlation based prediction neighbourhood size 4 (CMAP4),
and neighbourhood size 8 (CMAPS).

Slight improvement (in fact degradation for mixture size
4) compared to conventional MAP adaptation can be ob-
served from the table. We attribute this performance to
the relatively small amount of training data which is not
sufficient to estimate an accurate correlation structure. In
addition, the parameters are estimated from speaker groups
(because there is no sufficient data to estimate a robust
model for each speaker), and thus the estimated structure
doesn’t faithfully represent parameter movements for indi-
vidual speakers. We also suspected that using very simple
acoustic models may result in poor segmentation and hence
inaccurate estimation of the correlation structure. To assess
these points we performed numerous experiments; using the
segmentation provided with TIMIT in correlation structure
estimation, increasing the number of speaker groups (V) by
using an automatic speaker clustering procedure, and using
models from individual speakers and replacing sample aver-
agesin (9) and (10) by MAP estimates, but no improvement
in results compared to Table-1 was observed. An explana-
tion may be that neither of these trials resulted in a good
balance between estimating robust speaker models, and us-
ing a sufficient number of groups to estimate an accurate
correlation structure, and we are currently experimenting
with a tying mechanism that considers the correlation be-
tween groups of distributions.

5.2. Isolated word recognition

The purpose of this experimental setting is to test the pre-
diction power of the proposed method. A vocabulary V is
divided into two subsets V1 and V2, where a closed test is
carried on each subvocabulary. During model adaptation of
a subvocabulary (say V1), only examples of the other sub-
vocabulary (say V2) are presented for adaptation. These
examples are used to obtain MAP estimates of the means
of V2, which are used to predict the means of V1 (using
equation (8)). The predicted means of V1 are then used in



testing. The same steps are repeated by reversing the roles
of both subvocabularies, and average results are reported.

In our experiments a 21 word vocabulary V' consisting of
5 subsets of confusable words given by:

e A J K.

e B,C,D,E, G, P T,V,Z THREE.
e M, N.

e GO, NO, OH.

o I, S, X.

The first subvocabulary V1 consists of 11 words given by:
o A J.

e B, D, G, T,Z
o M.

e GO, NO.

o I

The other subvocabulary V2 consists of the remaining 10
words. It should be noted that attempt was done to get an
even distribution of words of the confusable subsets among
the two subvocabularies.

The vocabulary is uttered by 24 speakers (12male/ 12fe-
male), each word is uttered two times by each speaker. The
speakers are divided into two balanced groups S1 and S2
each containing 12 speakers. Hidden Markov models as well
as correlation structure (equations (9)-(10)) estimated from
one group are used in processing the other group. Thus each
test consists of 4 smaller subtests resulting from the combi-
nations of the speaker groups and the subvocabularies, and
consists of 1008 trials.

We use 5 state left to right HMMs, having one Gaussian
distribution per state. 12 MFCC with and without using
the difference coefficients are used in the experiments. The
speaker independent word recognition accuracies with and
without using dynamic coeflicients are 84.0% and 79.5%
respectively. Table 2 shows the results of applying the
scenario described at the beginning of this subsection for
speaker adaptation. In MAP estimation of each word 2
repititions of the word are used. The table shows the re-
sults when varying the neighbourhood size from 4-16.

Neighbourhood 4 8 12 16
size

12 MFCC 80.8 | 82.4 | 84.8 | 83.7

12 MFCC + 85.5 | 87.1 | 87.3 | 87.1
12 AMFCC

Table 2. Word recognition rate (%) using predictive adapta-
tion for isolated word recognition task with and without using
difference coefficients for different neighbourhood sizes.

As can be seen from the table, the speaker adapted results
outperform the speaker independent ones for all neighbour-
hood sizes when using both static and static+dynamic coef-
ficients. Also the improvement increases with increasing the
neighbourhood size until it slightly degrades at neighbour-
hood size 16, probably due to inclusion of weakly correlated
distributions in the prediction.

6. CONCLUSION

We have presented a predictive adaptation technique for
the mean vectors of a hidden Markov model, which is po-
tentially capable of influencing parameters of the models
that have no observations in the adaptation speech. The
technique is based on the principle of MMSE estimation
to predict unobserved mean vectors. The predicition is a
combined estimate from a set of mean vectors in the neigh-
bourhood (in correlation sense) of the unobserved distribu-
tion. For the normal assumption used in this paper, some
interesting theoretical relationships between the proposed
method and both vector field correlation and linear regres-
sion based prediction are pointed out. The adaptation algo-
rithm was successfully tested in speaker adaptation experi-
ments for both TIMIT phonetic recognition, and an isolated
word recognition task.
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The Bayesian framework provides a theoretically optimal
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The efficacy of the proposed approach is demonstrated in
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