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ABSTRACT

An unsupervised, sentence-level, discriminative,
HMM adaptation algorithm based on silence-
speech classification is presented. Silence and
speech regions are determined either using an end-
pointer or using the segmentation obtained from
the recognizer in a first pass. A unsupervised dis-
criminative training procedure using the gradient
descent algorithm, with N-best competing strings
with word insertions is then used to improve the
discrimination between silence and speech. Ex-
periments on connected digits show about 40-80
% reduction in insertion errors, a small amount of
reduction in substitution errors, and a negligible
effect on deletion errors. In addition, experiments
on noisy speech showed about 70% word error rate
reduction, thus demonstrating the robustness of
the proposed adaptation technique.

1. INTRODUCTION

Acoustic mismatch between training and test-
ing conditions results in significant performance
degradation in hidden Markov model (HMM)-
based speech recognizers. Careful inspection of
the recognition errors shows that word insertion
and substitution errors often occur as a result of
poor recognition scores for acoustic segments with
low energy. Low-energy portions of the speech sig-
nal tend to be highly confusable with silence, es-
pecially when channel and noise mismatch exists
between the speech signal and the acoustic mod-
els. Various blind deconvolution and bias removal
schemes (for e.g., cepstral mean normalization [1])
exist that address this problem of mismatch at the
utterance level. This paper focuses on reducing
the utterance-model mismatch at those segments
of the speech signal where the acoustic characteris-
tics of the background and the speech signal, typ-
ically unvoiced portions, are similar.

Our goal in this paper is to adapt the param-
eters of the acoustic model, in an unsupervised
mode, during the recognition process in order to

improve discrimination between the background
model and the speech models. One (“instanta-
neous adaptation”) or more (“long-term adapta-
tion”) utterances can be used for adaptation. The
main idea is to increase the separation between the
correct string and competing string candidates. Al-
though the correct string is not known during the
recognition process, this study exploits the fact
that the silence regions of the sentence can be de-
termined with greater accuracy and efficiency and
these regions can be used for discriminative train-

Ing.

The organization of this paper is as follows.
First we present an overview of the relevant lit-
erature followed by the description of our pro-
posed speech-silence discrimination adaptation al-
gorithm. In Section 2.1, implementation issues are
discussed. Specifically, novel ways of producing
competing recognition hypothesis for the adapta-
tion algorithm are proposed. Finally, in Section 3,
we apply the algorithm to a connected digit recog-

nition task and show digit error rate reduction up
to 70-80%.

1.1. PREVIOUS WORK

A significant part of the speech recognition lit-
erature deals with problems caused to real-world
recognition systems by noise, distortion or vari-
ability in the speech waveform. Various algo-
rithms such as cepstral mean normalization, max-
imum likelihood (ML) cepstrum bias normaliza-
tion [1], ML frequency warping [2], and ML lin-
ear regression [3] have been proposed to deal with
these problems. Apart from these transformation-
based techniques that produce good results with
a limited amount of adaptation data, the acous-
tic models can be retrained using Bayesian adap-
tation. Bayesian adaptation typically requires a
large amount of adaptation data; algorithms have
been proposed for updating groups of HMM pa-
rameters or for smoothing the re-estimated param-
eter values, for e.g., vector field smoothing, classi-
fication tree or state-based clustering of distribu-



tions [4]. Parallel model combination (PMC) has
been also used to combat both additive noise dis-
tortion and multiplicative (channel) distortion [5].

Typically, these algorithms perform well for
simulated data, i.e., when additive or multiplica-
tive distortion is added to the speech signal in the
laboratory but not equally well in field trials where
a multitude of sources with time-varying charac-
teristics can distort the speech signal. In many
cases, very little data are available for adaptation.
Further, the adaptation data might not be tran-
scribed. For example, discriminative training of
HMDMs, which helps improve recognition accuracy
[8, 6, 7], assumes that the linguistic context of the
utterance is known. Unsupervised adaptation us-
ing very few utterances is a difficult problem be-
cause there are no guarantees that the adapted
parameters will converge toward global optimum
values. Utterance verification algorithms can be
used to make unsupervised adaptation more ro-
bust.

In this paper, we focus on the problem of
adapting the speech and silence acoustic models to
improve our ability to discriminate between speech
and silence regions. In the next section, we pro-
pose novel ways of producing competing recog-
nition hypotheses. Unsupervised discriminative
training with generalized probabilistic descent al-
gorithm (GPD) is used to adapt the speech and
silence acoustic models [9].

2. SPEECH-SILENCE ADAPTATION
ALGORITHM

The short-term and long-term spectral character-
istics of the background part of speech utterances
collected through the public switched telephone
network are highly variable. Although HMM-
based recognizers often confuse the background
with valid speech segments, thereby producing in-
sertion or deletion errors, portions of the back-
ground (stlence) regions can be identified with
fairly high accuracy using simpler but more robust
techniques using features such as the short-time
energy and the short-time zero-crossings. The high
degree of certainty in determining silence regions
and the use of only these regions to adapt both
speech and silence models makes the speech-silence
adaptation algorithm both accurate and efficient.

The adaptation algorithm consists of the fol-
lowing four steps:

1. Split the input utterance into speech and si-
lence regions. If more than one background
HMM is used, do optimal (Viterbi) decod-
ing of silence regions using the background

HMMs.

2. Generate competing strings by aligning the
states of speech HMM to silence regions
(i.e., artificially encourage or force inser-
tions).

3. Enhance separation between HMMs in cor-
rect and competing strings using a discrimi-
native training algorithm.

4. Perform optimal decoding (recognition) on
the whole utterance using the newly adapted
HMMs and any prescribed grammar.

There are many ways to implement steps 1,2 and
3 of the algorithm proposed above. Next, we dis-
cuss a simple and efficient implementation of the
adaptation algorithm.

2.1. IMPLEMENTATION ISSUES

Speech-silence segmentation (step 1) may be ob-
tained by a simple preprocessing step before the
recognition process begins. In the current imple-
mentation the silence-speech segmentation is per-
formed by the recognizer in the first pass using
the initial HMMs, and a grammar, with no inser-
tion penalties. This is assumed to be the “correct
string”. Competing strings (step 2) are produced
in two alternative ways:

(a) Acoustically-driven insertion: A negative in-
sertion penalty (insertion incentive) is used
to decode four best competing strings (en-
couraged internal insertion).

(b) Blind external insertion: Eleven competing
strings (for digit recognition test) are gen-
erated: each digit is added before and af-
ter the initially recognized string, generating
one competing string (forced external inser-
tion).

The discriminative training [7, 6] (step 3) is per-
formed by using the minimum string-error train-
ing algorithm using N competing string models
[9]- A brief description of the discriminative train-
ing algorithm using GPD is given in the next sec-
tion (Sec. 2.2). Finally the second-pass recogni-
tion is performed with the adapted models using
the Viterbi decoding algorithm (step 4).

2.2. DISCRIMINATIVE TRAINING

The goal of the discriminative model training al-
gorithm [7, 6] is to find a model set that optimally
distinguishes between observation sequences cor-
responding to correct class models and those of N



competing class models by maximizing the mutual
information between the observation sequence O
and the words or strings of that class (represented
by a parametrized HMM, A). The misclassifica-
tion measure

1
d(O,A) = —g¢(0,S,,A)+log {7\/——1
T Sk#S
(1)
uses the discriminant function

g(o) SkaA) = logf(o)eSkaSk l A) (2)

which is defined in terms of the loglikelihood score
f on the optimal state sequence ©g, (given the
model set A) for the k' best string, Si. The
discriminant function for the transcribed training
string S, is g(0,S,,A). The model loss func-
tion for string error rate minimization, {(O,A) =
1/(1 4 exp(—+yd(O, A)), where v is a positive con-
stant, is solved using gradient descent algorithm
(8, 9.

As will be shown in the next section, the N
competing strings can be generated directly from
the acoustics or externally by some simple blind
string appending scheme.

3. RECOGNITION EXPERIMENTS

Speech units (words and subwords) as well as back-
ground silence are modeled by first order, left-to-
right HMMs with continuous observation densi-
ties. The observation vector consists of 39 fea-
tures: 12 LPC derived cepstral coefficients, dy-
namically normalized energy, as well as their first
and second derivatives. Eleven digits, including
“ol” and “zero”, were used in the evaluation task.
Each digit was modeled with either 20 or 15 state
HMMs, with 16 Gaussian mixtures. Speech back-
ground (silence) is modeled with a single state, 128
Gaussian mixture HMM. The HMMs were trained
using data extracted from speech data collected
over the telephone network (16089 digit strings).

In the recognition process, the sequence of ob-
servation vectors from an unknown speech utter-
ance are matched against a set of stored hid-
den Markov models representing speech units. A
search network is generated by a finite state gram-
mar that describes the set of valid strings. The
network search algorithm returns the single most
likely sequence of speech units. The search proce-
dure is a Dynamic Programming (DP) algorithm
(Viterbi  decoding) where the goal is to find a
valid state sequence with the highest accumulated
state log-likelihood.

Experimental Results: The algorithm was
tested on speech data collected from two AT&T
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service trials. Trial I data, consisting of 10768
16-digit strings, represented matched training and
testing conditions. On the other hand, no data
from Trial IT were represented in training. More-
over, Trial II data consist only of single digits (a
total of 2159 utterances). It should be pointed out
that isolated digits represented only a small por-
tion of the training database. In addition, a test
set with noisy speech data (601 digit strings spo-
ken over the telephone network), marked by hu-
man listeners, was used to verify the robustness of
the proposed algorithm.

Tables 1 and 2 summarize the recognition
results for various testing conditions: Results
are compared for the two methods of compet-
ing string generation (N-best competing strings by
acoustically-driven insertion using insertion incen-
tives and blind external insertion by forced initial
and final digit appending), with each case repeated
with and without resetting the models to the base-
line class for each new string input. The baseline
results correspond to no model adaptation.

Under reasonably matched training and test-
ing conditions, we observe that insertion errors are
reduced in all test cases when adaptation is used.
The best results are obtained for the case that uses
competing strings generated through insertion in-
centives. Moreover, as expected, long-term adap-
tation (using all available utterances for adapta-
tion) performs better than instantaneous adapta-
tion (i.e., a single utterance is used to adapt the
HMMs). On the other hand, although the blind
insertion method has a similar effect on insertion
errors, 1t is accompanied by increased substitu-
tion and deletion errors, particularly in the long-
term adaptation case, suggesting divergence in the
adapted models with increasing adaptation data.

The unusually high number of insertion er-
rors in the baseline results for Trial II data is at-
tributed to the structural mismatch between the
training data and this particular test set which
is composed entirely of isolated digits. Instanta-
neous adaptation gives about 36-38% improvement
in word error rates for both methods of compet-
ing string generation. For long-term adaptation,
however, the blind insertion method of competing
string generation yields poorer performance than
the baseline while the acoustically-driven inser-
tion method yields more than 80% improvement
in word error rate. A closer analysis of the re-
sults shows that although there is improvement in
insertion errors (which is indeed the objective of
our proposed algorithm), there is significant in-
crease in substitution errors for the blind insertion
method. This result further supports our earlier
remark that model divergence (instability) with in-
creasing adaptation data is a potential pitfall when
blind insertion is used for competing string gener-



Word Error (%) Word Error (%)

Competing string | Adaptation | Total Sub Del Ins Competing string | Adaptation | Total Sub Del Ins
generation mode generation mode

None (baseline) N/A 1.25 0.8 0.1 04 None (baseline) N/A 1220 14 0.0 108

acous. driven ins long-term 1.08* 08 0.1 0.2 acous. driven ins long-term 2.11* 1.3 0.0 0.8

blind ins long-term 1.23 09 0.2 0.2 blind ins long-term 153 12,5 0.0 2.9

acous. driven ins instant. 1.16 07 01 03 acous. driven ins instant. 7.56 1.3 0.0 6.1

blind ins instant. 1.17 07 01 03 blind ins instant. 7.8 1.3 0.0 6.4

Table 1: Recognition performance on Trial 1 test
data (N = 10768 strings) with HMM adaptation:
matched training and testing conditions. Results
are shown for instantaneous and long-term adap-
tation and for the two methods of competing string
generation: acoustically-driven by insertion incen-
tives and blind insertion by word appending.

ation.

Table 3 shows the performance results on the
noisy speech data. Baseline results show high
insertion error rates which decrease dramatically
with the new adaptation strategy. Although there
is slight increase in the deletion errors, the overall
error rate improvement is dominated by the de-
crease in the insertions.

4. SUMMARY

A novel HMM adaptation method based on
speech-silence discrimination was presented. In
summary, the main contributions of this work are:

e The exclusive use of signal portions declared
by the algorithm as silence segments (i.e.,
unsupervised modality) for adapting both si-
lence and some/all speech models in a way
that results in improved speech-silence dis-
crimination in the new model set.

¢ Automatic competing string generation by
providing insertion incentives, inserting
words that are naturally prone to acoustic
confusion with background.

e Unsupervised adaptation using the gradient
descent algorithm that assures convergence.

Results show that competing strings directly pro-
vided by the recognizer by employing insertion in-
centives give the most useful set of data for speech-
silence discrimination, and yields the best overall
error rate improvements even under mismatched
training and testing conditions. Dramatic im-
provements in insertion errors were obtained for
telephone speech data with high background noise.

Table 2: Recognition performance on Trial II test
data (N = 2159) with HMM adaptation: mis-
matched testing and training conditions. Other
testing conditions similar to those for Table 1.

Recognition Word Error | Sub  Del Ins
details % % % %
Baseline 15.9 13.8 0.2 1.9
blind ins 5.1 2.3 0.9 1.9
acous. driven ins 4.9 2.2 0.9 1.8

Table 3: Recognition performance on digit strings
(N = 601) with appreciable background noise (as
marked by human listeners) with instantaneous

HMM adaptation.
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