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ABSTRACT

This paper describes Jacobian adaptation (JA) of
acoustic models to environmental noise and its ex-
perimental evaluation. JA is based on a “noise
adaptation” idea, which is acoustic model adaptation
from initial noise A to target noise B, and uses Ja-
cobian matrices to relate changes in environmental
noise with changes in the “speech+noise” acoustic
model. It is experimentally shown that JA performs
well compared with existing techniques such as HMM
composition, particularly when only a short sample
(shorter than 1 sec) of the target noise is given, and
that JA is very advantageous in terms of computa-
tional cost. Moreover, this paper describes JA used
in combination with noise spectral subtraction and
shows that improving SNR by spectral subtraction
leads to higher efficiency.

1. INTRODUCTION

In real applications of speech recognition, mismatch
between training and testing environments often oc-
curs, because environmental conditions may vary
from time to time (e.g., mobile applications) or with
a place (e.g., telephone applications). This results in
a serious degradation of performance.

The best answer to this problem may be to retrain
acoustic models with corrupted speech data observed
in the test environment. However, the retraining re-
quires many computations and a considerable amount
of noise data, so it is not reasonable for real applica-
tions. HMM composition techniques, such as PMC [1]
and NOVO [2], reduce the mismatch by combining a
speech model and a noise model trained with data ob-
served in the testing environment. These techniques
require fewer computations and less noise data than
the retraining, but they are insufficient for real-time
acoustic model adaptation.

On the other hand, like speaker adaptation from
initial speaker A to target speaker B, it is reasonable
to consider the possibility of acoustic model adap-
tation from initial noise A to target noise B. Based
on this “noise adaptation” idea, we proposed a fast
model adaptation technique based on Jacobian ma-
trices [3]. This technique is low in computation cost
and requires only a small amount of noise data for

acoustic model adaptation in comparison with NOVO
(equivalently PMC).

In this paper, we focus on the performance of this
method in adapting cepstrum parameters only and in
adapting both cepstrum and delta cepstrum parame-
ters. These were tested while changing noise spectral
shapes, noise levels (SNR), and observation lengths
of the target noise. Next, we tested various noise
changes and investigated the range of noise changes
that this method can handle. Finally, we evaluated
the combination of this method and spectral subtrac-
tion (SS). We can expect further improvements by
SS, because the performance of acoustic model adap-
tation to environmental noise, such as HMM composi-
tion and also our proposed method, depends strongly
on the SNR.

2. JACOBIAN ADAPTATION (JA)

2.1. JA of Cepstra

Recently, the authors proposed a fast algorithm for
acoustic model adaptation to environmental noise
[3]. Since cepstrum parameters in “speech-+noise”
models are non-linear functions of the cepstrum of
the background noise, a small change, ACs,y, in
“speech+noise” cepstrum, Csy v, is related to a small
change, ACl, in the noise cepstrum, Cy, by a Jaco-
bian matrix such that
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ACsyn = ACy. (1)

The Jacobian matrix is obtained as follows (See [3]
for the detailed derivation).
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where S, N, and § + N represent the clean speech
spectrum, the initial noise spectrum, and the initial
“speech+noise” spectrum, respectively. .S’-FLN is the
element-wise division of the vector N by § 4+ N.
F and F* are the Fourier transform matrix and its
transposed complex conjugate. The matrices can be
calculated in the training phase.

2.2. JA of Delta Cepstra

Similar to adapting cepstrum mean vectors of HMMs,
delta cepstrum mean vectors can also be compen-
sated by Jacobian matrices. Here we consider delta



cepstra of the time derivative of cepstra. Denoting
the time derivative of C by C, the formulations for
adapting delta cepstrum parameters are the following
equations.
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where § represents the time derivative of the clean
speech spectrum. IN S is the element-wise multipli-
cation of the vector N by S. In these formulas, we

ignore % and N, because we assume that the

mean of the delta cepstrum of the noise signal is 0.
From the above point-to-point relationship in cep-
strum and delta cepstrum domains, the noise adap-
tation algorithm is derived for the mean vectors and
covariance matrices of individual distributions [3].

2.3. The JA Algorithm for Continuous Mix-
ture HMMs

The noise adaptation procedure by JA for the mean
vectors of continuous mixture HMMs is summarized
as follows. (The covariance matrices are left un-
changed in this paper.)

[Training Phase]

Step 1: Assume initial noise A and train initial
“speech+noise” models.  Alternatively, the
initial models can be composed by PMC or
NOVO from existing clean speech HMMSs and
the assumed noise.

Step 2: Calculate a Jacobian matrix for each of

the mean vectors in the initial “speech+noise”
HMMs.

[Recognition Phase]

Step 3: Observe target noise B for adaptation
(e.g., just before the target speech) and obtain
the noise cepstral means.

Step 4: Update all cepstrum and delta cepstrum
mean vectors in the initial “speech+noise”
HMMs from Jacobian matrices and from the
differences of parameters between the assumed
and the observed noises.

All we have to do for adaptation in the recognition
phase is simply to multiply a p X p matrix by a pth-
order vector (p = 17 in the following experiments)
and add to the mean vector for each of the Gaus-
sian distributions. Thus the “speech+noise” model
can be adapted instantaneously after the target noise
observation.

3. COMBINATION OF JA AND
SPECTRAL SUBTRACTION (SS)

To enhance JA, we combine JA and noise spectral
subtraction (SS). (Hereinafter, this combination is

Table 1. CPU time for adaptation (not includ-
ing acoustic analysis).

JA
phase cep ceprdcep NOVO
training 2,216 ms | 8,033 ms | 4,416 ms
recognition 149 ms 349 ms | 5,066 ms

(measured on Sun SPARCstation20)

called “SS-JA”.) SS formulation is as follows [4].

S=(S+N)-aN
z_/ S if § >3 (S+N) (5)
| B(S+N) otherwise

where N is the average noise spectrum, and enhanced
speech § is the input for training and recognition. a
is an overestimation factor and f is a flooring factor.

In JA, it is necessary to observe the changes of noise
component directly. In the SS procedure, however,
the noise component is given by the overestimation
and underestimation components of the noise in the
above procedure, so these estimation errors are not
directly observed. Therefore, we roughly obtained
the noise component including the estimation errors
using the following procedure in SS-JA.

NZ N—O[NN
N— N if N>gy N (6)
" | Axv N otherwise

where N is the overestimation and underestimation
error components of the noise spectrum. ay and Gy
are the overestimation and flooring factors. In this
paper, we adopted NOVO models combined with SS
(SS-NOVO) as the initial models used in SS-JA. SS-
NOVO also uses the noise estimation procedure in
Eq. (6) when the noise model is trained.

4. EXPERIMENTAL EVALUATION

4.1. Conditions

JA was experimentally evaluated on isolated 400-
word speech recognition and compared with NOVO
(equivalently PMC). The test speech data were noise-
corrupted data of 100 city names uttered by 13
speakers. In word recognition, we used 33-order
feature vectors: 16-order LPC cepstrum vectors,
16-order delta cepstrum vectors and a delta log
power. In adaptation, we added a log power. Initial
“speech+noise” models used in JA were composed
by NOVO. Also, initial noise model was trained with
60-sec noise data in all experiments. The JA algo-
rithm was applied to cepstrum parameters only and
to both cepstrum and delta cepstrum parameters, and
the performance was compared. In figures and tables,
these are indicated as JA (cep) and JA (cep+dcep).

4.2. Fundamental Performance of JA

Table 1 shows the CPU time for JA and NOVO.
In terms of adaptation after target noise is observed,
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(b) noise adaptation from crossroads noise to ez-
hibition hall noise.

Figure 1. Word recognition rates for various
observation lengths of the target noise at 10
dB SNR.
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Figure 2. Word recognition rates for changes
of SNR from initial 20 dB; observation length
of target noise is 500 ms.

JA required approximately 1/34 the computational
cost of NOVO, and 1/15 when additionally adapt-
ing the delta cepstrum parameters. These results
imply that JA is suitable for instantaneous (online
real-time) acoustic model adaptation to environmen-
tal noise.

Figure 1 shows word recognition rates of noise
adaptation from a different noise to exhibition hall
noise for various observation lengths of target noise.
The results show JA performed better than NOVO
for short lengths of the target noise, even for 200 ms.
The decrease of the performance of NOVO with short
lengths of target data is caused by the estimation er-
ror of noise variance.

Table 2. Word recognition rates of JA from
7 typical initial noise models, the target noise
being 500 ms at 10 dB SNR; ERR denotes the
error reduction rate.

s . target initial JA | ERR
initial noise . model
noise (%) (%) | (%)
computer room 11.2 | 61.1 | 56.2
factory 18.8 | 71.8 | 65.3
passing trains | exhi- 42.5 | 70.7 [ 49.0
crossroads bition 50.0 [ 73.2 | 464
n car hall 55.4 | 68.7 [ 29.8
radlway station 66.2 | 73.3 | 21.0
crowd 724 | 75.2 | 10.1
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Figure 3. Relationship between word recogni-
tion rates with noise-mismatched initial model
and with JA from 19 initial noise models to the
target of 500-ms ezhibition hall noise at 10-dB

SNR.

In Fig. 1(a), adaptation of both cepstrum and delta
cepstrum parameters improved the recognition rate
when the noise data length was relatively long (i.e.,
800 - 3,000 ms). In Fig. 1(b), however, adaptation
of both parameters showed even lower performance
over the whole noise length than adaptation of cep-
strum parameters only. We consider that adaptation
of delta cepstrum parameters improves the recogni-
tion rate when the initial noise and target noise are
close and the long target noise is obtained.

Figure 2 shows word recognition rates for changes
of SNR. The initial model was trained with 10-dB ez-
hibition hall noise. The target noises used in JA were
500-ms exhibition hall noise with the SNR ranging
from 0 dB to 20 dB. We couldn’t find a significant
advantage compared with using the initial model in
mismatched SNR.

4.3. Performance for Various Noise Changes

JA is based on the idea of “noise adaptation” where
initial noise A is adapted to target noise B. To investi-
gate how large differences are allowed in JA from the
initial noise A to the target noise B, we tested 19 var-
ious initial noises (crowd, crossroads, passing trains,
etc.), the target noise being fixed as ezhibition hall.

Table 2 and Fig. 3 show word recognition rates with
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Figure 4. Word recognition rates combining
with SS for various observation lengths of the
target noise at 10 dB SNR.

the noise-mismatched initial model and that with JA
(in adaptation cepstrum only). Seven of the noise
changes are listed in Table 2 as examples and the
relationships between them in all 19 noise changes
are plotted in Fig. 3. In these results, the higher
word recognition rate with the initial model implies
the initial noise is closer to the target noise.

Since JA is based on first order Taylor approxima-
tion, it might be supposed that the performance of JA
is limited within or near the linearity range and JA
is able to handle only small changes in noise. These
results indicate that, as the target noise becomes fur-
ther from the initial noise, recognition performance
with JA is degraded gradually. However, the recog-
nition performance was significantly improved by JA,
even if the recognition rates with the initial models
were low; for example, the recognition rate improved
from 11.2 % to 61.1 % for noise change from computer
room noise to ezhibition hall noise. We can see that
JA works even for large changes in noise.

4.4. Combination of JA with SS

Figure 4 and 5 show the respective improvements
obtained by combining JA with SS (denoted “SS-” in
the figures) under the same conditions in Fig. 1 and 2.
The average noise spectrum used in SS was estimated
from 20-frame data just before the utterance. Initial
“speech+noise” models used in SS-JA were composed
by SS-NOVO. These result confirm that the combi-
nation of JA and SS provided a large improvement in
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Figure 5. Word recognition rates combin-

ing with SS for changes of SNR; observation
length of target noise is 500 ms.

recognition rate.

5. CONCLUSION

We have presented an experimental evaluation of fast
adaptation of acoustic models to environmental noise
based on JA. The advantages of this method are
that it requires only a small amount of noise data
and reduces computation cost compared with NOVO
(equivalently PMC). Although adaptation of delta
cepstrum parameters improved the recognition per-
formance in the limited cases, the above advantages
enable acoustic models to be adapted to fluctuating
environmental noise in each speaker’s utterance when
only a short noise is observed (e.g., between the guid-
ance sentences) before the utterance. Moreover, it
was found that performance could be improved by
combining of JA and SS.

The evaluation of JA for various noise adaptations
demonstrated it could handle large changes in noise,
even if the initial noise was not close to the target
noise. As the target noise becomes further from the
initial noise, however, recognition performance with
JA is degraded gradually. Our future work will in-
clude multiple initial “speech+noise” models from
which the closest noise condition to the target noise
is selected before JA is applied.
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