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ABSTRACT

This paper describes a segment (e.g. phoneme) bound-
ary estimation method based on recurrent neural networks
(RNNs). The proposed method only requires acoustic
observations to accurately estimate segment boundaries.
Experimental results show that the proposed method can
estimate segment boundaries significantly better than an
HMM based method. Furthermore, we incorporate the
RNN based segment boundary estimator into the HMM
based and segment based recognition systems. As a re-
sult, the segment boundary estimates give useful informa-
tion for reducing computational complexity and improv-
ing recognition performance.

1. INTRODUCTION

Accurately estimating segment boundaries is one of the
most important techniques in (1) automatic segmentation
[1][2] for acoustic model training and in (2) preprocessing
for segment based speech recognition [3]. Conventional
segmentation algorithms attempt to locate optimal seg-
ment boundaries either by minimizing distortion metrics
through dynamic programming based methods [1] or by
maximizing the metric score of acoustic models [2]. These
algorithms, however, require acoustic (and language or
duration) models to obtain adequate results. Neverthe-
less, even with such models, the estimated results are
generally still poor because the approaches are not de-
signed to detect boundaries, but rather to minimize or
maximize scores for acoustic observations (e.g. cepstrum).
Neural networks (NNs) that show a high performance for
many classification tasks are suitable for estimating accu-
rate boundaries. There have recently been several reports
that boundary information obtained from feed-forward
multilayer perceptrons (MLP) improves recognition per-
formance [4][5].

In this paper, we propose a segment (e.g. phoneme)
boundary estimation method based on bi-directional re-
current neural networks (BRNNs). A BRNN can be
trained without the limitation of using a fixed size input
window, and it gave better classification performance than
aregular RNN on test problems [6]. The proposed method
only requires acoustic observations to estimate segment
boundaries, and networks are trained to accurately detect
segment boundaries. We apply segment boundary estima-
tion

1. to improve recognition performance using the net-
work outputs and

2. to reduce computational complexity of segment based
recognition using estimated candidates.

2. BRNN BASED SEGMENT BOUNDARY
ESTIMATION

2.1. BRNN Structure
Bi-directional Recurrent Neural Networks (BRNNs) [6]

are used for segment boundary estimation, and their
structure is illustrated in Fig. 1. BRNNs can recur-
sively accommodate forward and backward inputs to pre-
dict current output by only using a single network. A
conventional RNN only uses input information from one
side for the currently estimated output.

2.2. Input and Output

Feature parameter vectors (e.g. cepstrum) are used for
the BRNN input, and the outputs (target values) are cho-
sen according to whether the current frame is a boundary
(out=1) or not (out=0). Figure 2 shows an example of
outputs for BRNN based segment boundary estimation.
The dotted line represents a true (target) output and the
solid line represents an estimated output. These results
were obtained for open test data using the network trained
as described in 3.1..

2.3. Segment Boundary Estimation Algorithm

To determine segment boundaries from the BRNN out-
puts as shown in Fig. 2, the following three methods are
used. A certain time point (frame) ¢ is said to be a bound-
ary if:

1. the output at ¢ is above threshold 2 and is a local
maximuim;

2. the output at ¢ is above threshold & or is a local max-
imum between a lower threshold I(< &) and h;

3. the same as method 2, but for segment boundaries
whose outputs are above threshold h, only every k-th
time point is taken.

Method 1 is the simplest method and can be directly
used to determine segment boundaries. Methods 2 and
3 are a little bit more complicated and possibly involve
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Figure 1. Bi-directional recurrent neural net-
works.
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Figure 2. An example of BRNN outputs.
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Figure 3. Lattice representation of segment
boundary candidates.

first constructing a segment lattice (Fig.3) to characterize
possible boundaries. Next, this segment lattice can be
pruned by using more sophisticated evaluation methods
(e.g. segment model based phoneme recognition) than
simple network outputs to extract “better” boundaries.

3. PHONEME BOUNDARY ESTIMATION
EXPERIMENTS

To investigate whether the proposed methods are useful,
(1) a comparison between estimated boundaries obtained
by method 1 and HMM based phoneme recognition re-
sults, (2) a comparison between BRNN and MLP and (3)
a comparison among methods 1, 2 and 3 were done using

the TIMIT database.

3.1. Conditions

26-dimensional MFCCs (12—dimensi0nal MFCC + power
and their derivatives) computed with a 25.6 msec win-
dow duration and a 10 msec frame period were used as
the BRNN inputs. Based on the phoneme label informa-
tion of the database, 1.0 is given for outputs if the current
frame is a segment (phoneme) boundary, 0.5 is given if the
current frame is right next to the boundary, and for any-
thing else 0 is given. 10 forward and backward states and
30 hidden states for the BRNN were used (2,181 weights
in total), and BRNN training was done using 462 speakers
with 1,000 iterations. Test data was used for 168 speak-
ers (50,318 boundaries, about 410,000 frames). The mean
squared errors between true (target) and estimates were
0.0604 for training data and 0.0621 for testing data, re-
spectively. Thresholds in methods 1, 2 and 3 were expe-
rimentally set to h = 0.4 and [ = 0.1.

To compare the proposed method with the HMM
based method, context-independent (CI) models, context-
dependent (CD) models and a phoneme bigram language
model were generated for 61 TIMIT phonemes. Left-to-
right HMMs with 3 states for each phoneme and 5 Gaus-
sian mixture components per state were trained for the CI

models. As for the CD models, shared-state HMMs (600
states in total) with 3 Gaussian mixture components per
state were trained [7]. The feature parameters and the
training data were the same as for the BRNN conditions.

The MLP structure was tested here for three different
structures allowing the use of the following three amounts
of acoustic context: (1) one frame as input (MLP-1), (2)
three frames (middle, left and right) as input (MLP-3),
and (3) five frames (middle, two left and two right) as
input (MLP-5). The structures of these networks were
adjusted so each of them had about the same number of
free parameters for the BRNN (approximately 2,200 here).
The feature parameters, the training data, the iterations
and the thresholds were the same as for the BRNN con-
ditions.

3.2. Evaluation Criterion

To evaluate the estimated results, Correct = H/N x
100(%) and Accuracy = (N — D — I)/N x 100(%) were

used, where

e H (Hit) : estimated boundary was within a +M
frame margin of the true boundary

o D (Deletion) :
+M

o [ (Insertion) : estimated boundary was not within

+M
e N : total number of true boundaries (N = H 4+ D).

no estimated boundary was within

Note that if several estimated boundaries 7 were within
+M, 1 — 1 were treated as insertions.

3.3. Results

8.8.1. Comparison between method 1 and an HMM based
approach

Estimation results with margins of M = 0,1,2 are shown
in Table 1. To produce reference results, an evaluation
was performed by using the boundaries obtained through
HMM based phoneme recognition with HMMs and a
phoneme bigram language model. The results for the
context-independent HMMs and the context-dependent
HMMs are listed in Table 2(a) and Table 2(b), respec-
tively. Comparing Table 1 with Table 2, the proposed
method gives considerably higher accuracy than the HMM
based approach, especially for M = 0 or M = 1, even
though the BRNN based approach does not use any lin-
guistic knowledge. The reason might be that the BRNNs
are trained to accurately detect segment boundaries, while
the HMMs are trained based on maximum likelihood cri-
teria.

8.8.2.  Comparison between BRNN and MLP

Table 3 shows the comparison of estimation performances
between BRNN and MLP for method 1. The BRNN struc-
ture results in the best performance. Moreover, it has the
advantage that one does not have to choose the optimum
number of consecutive frames to define an input window
size.

8.8.83.  Comparison among methods 1, 2 and 3

Estimation results for methods 1, 2 and 3 are shown in
Table 4. Skip step k& in method 3 and M were both
set to 2. Method 1 gave the highest accuracy, but there
were a large number of deletion errors. This indicates
that method 1 would not be appropriate when boundary
candidates could be evaluated with other techniques as



Table 1. Estimation results based on the BRNN
(method 1).

Margin
0 1 2
it 23,175 | 38,248 | 40,056

Deletion | 27,143 | 12,070 | 10,262
Insertion | 18,983 4,066 2,293
Correct 46.06 76.01 79.61
Accuracy 8.33 67.93 75.05

Table 2. Estimation results based on the HMM.
(a) context-independent model

Margin
0 1 2
it 8,806 | 28,214 | 38,847

Deletion | 41,512 | 22,104 | 11,471
Insertion | 35,372 | 16,253 5,915
Correct 17.50 56.07 77.20
Accuracy | -52.80 23.77 65.45

(b) context-dependent model

Margin
0 1 2
it 14,198 | 35,967 | 42,611

Deletion | 36,120 | 14,351 | 7,707
Insertion | 32,970 | 11,521 5,110
Correct 28.22 71.47 84.68
Accuracy | -37.31 48.58 74.53

Table 3. Comparison of estimation performance
between BRNN and MLP (Accuracy %).

Weights Margin

0 1 2
MLP-1 (1 frame) 2,241 1.46 | 61.90 | 68.64
MLP-3 (3 frames) 2,241 6.12 | 64.16 | 70.94
MLP-5 (5 frames) 2,245 6.20 | 64.69 | 71.64
BRNN 2,181 8.33 | 67.93 | 75.05

Structure

Table 4. Estimation performance for the three
kinds of BRNN based methods.

Method
1 2 3
it 40,056 | 48,856 | 48,856

Deletion | 10,262 | 1,462 | 1,461
Insertion 2,293 | 67,570 | 30,629
Correct 79.61 97.10 97.10
Accuracy 75.05 | -37.19 36.22

described in 4.2.. Here, method 3 would be applicable
because 97.10% of the correct boundaries remain in the
results with smaller insertion errors compared to those of
method 2.

4. APPLICATION TO SPEECH
RECOGNITION

From the experimental results, we can expect that the
BRNN based segment boundary estimator gives useful
information for existing speech recognition systems. In
this section, we apply the BRNN based segment bound-
ary estimator to two kinds of speech recognition systems,
an HMM based system and a segment model based sys-
tem, in order to achieve better recognition performance
or reduce search space. For both systems, we inves-
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Figure 4. Integration of phoneme boundary infor-
mation into an HMM.

tigate the effectiveness of phoneme boundary informa-
tion through phoneme recognition experiments using the
TIMIT database (462 speakers for training and 168 speak-
ers for testing).

4.1. HMM Based System
4.1.1. Integration as phoneme boundary probability

If we consider the outputs y(o:) (0 < y(o;) < 1) of
the BRNN for the observation vector o; at time ¢ as the
phoneme boundary probability, 1—y(0;) can be regarded as
the intra-phoneme probability. These probabilities can be
easily incorporated into the transition probabilities of con-
ventional HMMs by taking the product of the two terms
to be:

@ij (0¢) = aij - si;(0), (1)
where a;; is the transition probabilities from state ¢ to
state y and

if 5 1s the final state

sw(ot):{ gll(ft;’(ot) it 2)

Figure 4 shows an example of s;; (ot) for a three-state
HMM. The time (observation) dependent transition prob-
abilities @;; are used in the recognition process.

4.1.2.  HMM based recognition experiments

The shared-state context-dependent HMMs described in
3.1. and a phoneme bigram language model were trained
for 61 phonemes. Phoneme recognition was performed
using a time-synchronous beam search based decoder [8].
Table 5 shows the recognition results and computational
requirements compared to the total time of the utter-
ances. We can see from this table that the BRNN-derived
boundary probabilities improve not only recognition per-
formance, but also computational requirements. Note
that boundary probabilities can be obtained with small
computational requirements: about 0.17 seconds are re-
quired for 3.06 second utterances on an HP735 worksta-
tion.

4.2. Segment Model Based System
4.2.1.  Phoneme segment lattice creation

Recently, a variety of segment models (SMs) have been
proposed for relaxing the independence assumption of ob-
servation, which is a shortcoming of conventional HMMs.
SM based recognition systems, however, generally require
much more computation than HMM systems. Therefore,
to use SMs in in real-time systems, we have to reduce
the computational costs by rescoring N-best candidates
or word lattices obtained through HMM based recognition
[9][10], or by generating segment lattices with a simple
phoneme boundary detector [3]. However, it is not easy to
improve performance unless accurate segment boundaries



Table 5. HMM based recognition results. Recognition results evaluated with 39 phoneme sets are shown

in brackets.

phoneme accuracy (%)

without language model

CPU time (%)

with language model
phoneme accuracy (%) CPU time (%)

without boundary prob. 50.05 (58.69) 114.1 57.37 (64.71) 476.6
with boundary prob. 53.13 (61.75) 92.5 58.03 (65.47) 332.7
improvement (%) 6.2 (7.4) 18.9 1.5 (2.2) 30.2

Segment Model Result

Speech Segment Boundafy _ Segment >
Based Recognizé¢r

Detector Lattice

Figure 5. Block diagram of the BRNN-PSM based
recognition system.

are included in the lattices. The fact that the segmen-
tation probability gave a statistically significant improve-
ment of recognition [5] indicates that accurate boundary
estimation in a segment based recognition system is very
important.

In method 3 described in 2.3., a boundary that is de-
tected from the output at ¢ and above threshold h is
called a main boundary, and a boundary that is a lo-
cal maximum between a lower threshold (< k) and &
is called a secondary boundary. A segment lattice can be
created by fully connecting boundaries existing between
main boundaries. This lattice is used for phoneme recog-
nition based on polynomial segment models (PSM) [11].
Figure 5 shows a block diagram of the BRNN-PSM based

recognition system.

4.2.2. BRNN-PSM based recognition experiments

We generated a context-independent PSM with a single
mixture for 61 phonemes. The regression order of the
mean trajectories was set to 2. The variance was time
invariant throughout a segment. The duration probabili-
ties, which were computed from a histogram of the train-
ing segment durations, were used in the recognition. No
language model was used in this experiment. Thresholds
were set to h = 0.6 and [ = 0.25.

Recognition results are listed in Table 6. For
comparison, results obtained using three-state context-
independent HMMs with a single mixture per state are
also listed in the table. Table 7 shows the number of
connections in the lattice (i.e. the number of segments
to be evaluated) for all test data. “fully connected” in-
dicates all possible connections with durations are from
3 frames to 70 frames. According to these results, the
BRNN-PSM based method achieved both better recogni-
tion performance than the HMM system and a consider-
able computational reduction.

Note that the recognition performance of the BRNN-
PSM based method will be improved by using a more
precise PSM whose variant is time variance through a seg-
ment [11].

5. CONCLUSION

A segment boundary estimation method based on a
BRNN has been proposed. The proposed method can ac-
curately estimate segment boundaries by only using time
series feature parameters. We applied this method to a
speech recognition system and showed that (1) the usage

Table 6. Recognition results using BRNN based
phoneme lattices and polynomial segment models
(BRNN-PSM). Recognition results evaluated with
39 phoneme sets are shown in brackets.
phoneme accuracy (%)

40.08 (49.64)

41.80 (52.40)

HMM
BRNN-PSM

Table 7. Computational reduction.
# of segments  reduction rate
2.46 x 107 —
73,348 1/335

fully connected
proposed

of BRNN outputs was effective for improving the recogni-
tion rate and reducing computational time in an HMM
based recognition system and (2) segment lattices ob-
tained by the proposed methods dramatically reduce the
computational complexity of segment model based recog-
nition.
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