
1

SPARSE CONNECTION AND PRUNING
IN LARGE DYNAMIC ARTIFICIAL NEURAL NETWORKS

Nikko Ström
Department of Speech, Music and Hearing

KTH (Royal Institute of Technology), Stockholm, Sweden
Tel. +46 8 790 75 63, FAX: +46 8 790 78 54, E-mail: nikko@speech.kth.se

ABSTRACT
This paper presents new methods for training large
neural networks for phoneme probability estimation. A
combination of the time-delay architecture and the
recurrent network architecture is used to capture the
important dynamic information of the speech signal.
Motivated by the fact that the number of connections in
fully connected recurrent networks grows super-linear
with the number of hidden units, schemes for sparse
connection and connection pruning are explored. It is
found that sparsely connected networks outperform their
fully connected counterparts with an equal or smaller
number of connections. The networks are evaluated in a
hybrid HMM/ANN system for phoneme recognition on
the TIMIT database. The achieved phoneme error-rate,
28.3%, for the standard 39 phoneme set on the core test-
set of the TIMIT database is not far from the lowest
reported. All training and simulation software used is
made freely available by the author1, making
reproduction of the results feasible.

1. INTRODUCTION
It is well-known that artificial neural networks can be
successfully used for phoneme recognition problems,
e.g., [1,2,3]. The phoneme recognition rate on the TIMIT
database reported in [3] is several percent higher than
that of all other systems – a large difference for this type
of test. Still, for the last years, the research activities on
ANNs for speech recognition have not by far been as
intensive as for the prevailing HMM paradigm. Besides
the general preference for a well established technology
and the somewhat disturbing lack of equally excellent
results reported for ANNs on the word-level, a possible
reason for the mild interest in ANN solutions can be
problems with the network training, i.e., efficiently and
robustly determining the parameters of the networks. For
example, the recurrent network used in [3] is trained with
special hardware and a rather complex training heuristic
is used with several ad hoc parameters to be determined
empirically.

Recurrent connections are not the only path to good
results, but other existing solutions have different
problems. Another architecture is used with good results
in [2]. There, time-delay windows [4] are used instead to

1 The software and documentation of the NICO tool-kit, used
in the ANN simulations in this paper, can be downloaded from
the home page: http://www.speech.kth.se/NICO/index.html

capture the temporal cues of the speech signal. The
absence of recurrent connections makes the training
algorithm more stable, but very large networks are used
to achieve good results, and therefore the available
computing resources limits the performance.

In contrast to the existing high performing ANN
solutions, the well-established Maximum Likelihood
(ML) training paradigm for the standard HMM (e.g. [5])
has a robust, theoretically well established training
scheme and must be considered a safer route to a
functioning speech recognition system today. The HMM
paradigm also has the advantage of a large mature body
of easily available software.

The aim of this paper is to describe new methods for
robust training of large, high performance ANNs using
limited computing resources, i.e., reduce the problems of
contemporary ANN solutions. Further, the software tool-
kit used for training and evaluating the neural networks is
made freely available1 to promote further development in
the field.

2. HMM/ANN HYBRID RECOGNITION
The phoneme recognizer used in the evaluations on the
TIMIT database, is a hybrid HMM/ANN (see for
example [4]), where the phoneme output activities of the
ANN are interpreted as the a posteriori phoneme
probabilities p(ci | o), and the observation probabilities,
p(o | ci), used in the HMM framework, are derived from
the a posteriori probabilities using Bayes’s rule.

() ()
() ()p o c

p c o

p c
p oi

i

i

=
(1)

The a priori class frequencies p(ci) are estimated off-line
from the training data and the unconditioned observation
probability, p(o), is constant for all classes and therefore
dropped in the computations.

Basically, a one-state Markov model is used for each
phoneme and the transition probabilities are estimated by
ML of the durations of the training database. In addition
to this weak duration model, a phoneme-dependent
minimum duration constraint is imposed by adding extra
nodes to the HMM and putting the self-loop on only the
last node. The minimum durations are selected such that
5% of the phones in the training data are shorter than the
minimum. This fraction was chosen, after some
experimenting, to optimize recognition performance. A
phoneme bi-gram grammar is used for the transition
probabilities between phonemes.

2

The a posteriori phoneme probabilities are estimated by
the output units of an ANN with 10 ms frame resolution.
A feature vector is computed from each frame including
the twelve first Mel cepstrum coefficients and the log
energy. The input to the ANN is the feature vector and its
first and second time derivatives. More details about the
signal processing, the estimation of the HMM parameters
and the dynamic decoding is given in [6].

3. ANN STRUCTURE AND TRAINING

3.1 Recurrent connections and time delay windows

Dynamic features of speech such as formant trajectories,
are not captured by the short time spectrum used as input
to the ANN. Therefore, phonetic classification can be
greatly enhanced by considering also the neighboring
spectra. A step in this direction was taken in [4] when
time-delay neural networks (TDNN) were introduced.
Here we will use the term TDNN for all architectures
where units are connected to lower layers with time-
delayed connections so that the activities depend on the
activities of lower layer units within a finite time-delay
window. The first experiments with TDNN successfully
showed improved classification of stop consonants where
the dynamics is of great importance [4]. Later it has been
successfully utilized in full-fledged hybrid HMM/ANN
speech recognition systems [2].

Recurrent neural networks (RNN) is a different course to
utilizing the context in the classification and are currently
the most successful architecture for phoneme recognition
[3]. In RNN, units in the same layer are connected to
each other with a time-delay of one. This approach
differs from TDNN in that the activity of a unit depends
recursively on activities at all previous times.

TDNNs and RNNs have much in common; in particular,
both use time-delayed connections to incorporate context
into the classification. If the connections of an RNN can
have multiple time-delays instead of just one time step,
the resulting network has all the modeling power of both
architectures. This unified architecture, RTDNN,
introduced in [7], is used in this study.

In the RTDNN framework we attempt to preserve the
best features of the TDNN and RNN structures. The
concept of look-ahead connections is borrowed from
TDNN. It simplifies ANN design because it makes
delayed targets unnecessary and the dynamic structure
more intuitive. Look-ahead connections force some unit
activities to be computed ahead of others, but the
network is still a feed-forward network as long as no
unit’s activity at a particular time depends on its own
activity.

3.2 Back-propagation through time

The networks are trained using a variation of the back-
propagation algorithm. The error gradient is computed
using back-propagation through time in a similar manner
as in [3].

A way to visualize back-propagation through time is to
draw the spatial dimension of the network in one
dimension, i.e., line up all units in one column. Then
unfold the network in the time dimension by drawing one
column of units for each time point. Figure 1 shows a
very simple example of such an unfolded network. The
unfolded network is similar to a network with no delays
but as many layers as there are time points. The
difference is that the connection weights are shared by all
connections that correspond to the same connection in
the original network. Back-propagation through time is
equivalent to standard back propagation with this
additional weight sharing constraint.

a

b

c

d

z-1

z-2
z-1

a

b c

d

z-1

time

a

b

c

d

a

b

c

d

a

b

c

d

a

b

c

d

Figure 1. A simple dynamic network (left) and the same
network unfolded in time (right) where the units a-d are
duplicated for each time-point. Connections labeled z-x

are delayed x time points.

3.3 Weight updating scheme

The error function is defined by setting the target for the
output unit of the correct phoneme for each frame to 1.0,
and all other targets to 0.0. The cross-entropy error
function is used.

The classic weight updating scheme (with some
modifications) is still a good choice for problems with a
large amount of training data. It can be written

∆

∆ ∆

∆

w

w w
E

w
w w w

ij

ij
n

ij
n

ij

ij
n

ij
n

ij
n

()

() ()

() () ()

0

1

1

0=

= +

= +

−

+

γ η
∂
∂

(2)

where superscript (n) indicates a parameter after weight
update number n, γ and η are the gain and momentum
parameters respectively and E is the error function. The
reason that this simple scheme is competitive, is that it
can be repeatedly applied before all samples of the
training data (one epoch) have been processed, to speed
up the convergence. In the case of standard back-
propagation, the weights can be updated after every
training pattern – so called pattern updating.

The picture becomes more complicated for back-
propagation through time because the derivatives
depends not only on the current pattern but on the whole
sequence of patterns. We have adopted the approximate
scheme to update the weights every N frames, i.e.,
approximate the derivative based on sub-sequences of
the training data. This method is also used in [3]. The
approximation is worse if the weights are updated

3

frequently, but on the other hand it is desirable to update
frequently, to speed up training. In the simulations, the
weights are updated every 20-30 frames (N is random
distributed R[20;30]). This is intuitively reasonable as it
corresponds to the length of a syllable.

To reach a minimum of E, the gain parameter must be
gradually decreased during the training. We have
combined this with cross-validation in a manner similar
to [2]. The idea is to decrease the gain parameter when
the objective function fails to decrease on a validation
set. To be more specific, the training data is partitioned
into a training set and a smaller validation set. The
training set is used for the actual back-propagation
training, and after each epoch, the error function E is
computed for the validation set too (without weight
updating). If E fails to decrease during an epoch, the gain
parameter γ is multiplied by a constant factor α < 1. In
this study α is always 0.5, η is 0.7, and the initial value
of γ is 10-5.

3.4 Network topology

In all simulations, a single hidden layer with recurrent
connections with the delays one, two and three frames
are used. The 39 input units are connected with a skewed
time-delay window, of -1 to +5 frames, to the hidden
units, and the 61 output units are connected with a
window of -1 to +1 frames to the hidden units. This
yields (with H hidden units)

39×H×7 + H×H×3 + H×61×3 = 456H + 3H2 (3)

connections. This number grows rapidly with H – for
example, 300 hidden units gives 406.800 connections.

4. PRUNING AND SPARSE
CONNECTION

It is our experience that the performance of the ANNs is
a monotonously increasing function of the number of
hidden units. The reason that the increased number of
free parameters does not hurt performance by over-
adaptation to the training data, is that the weight updating
scheme is controlled by a validation data set. Thus,
enlarging the hidden layer is a rather safe way to raise
performance. The problem is that the number of
connections grows very fast with the number of units
which makes training and evaluation unfeasible.
However, inspection of trained fully connected networks
have shown that a large part of all connections have very
small weights. This inspired us to study connection
pruning methods and sparse connection schemes to be
able to work with large networks with a manageable
number of connections.

Connection pruning is a method that reduces the runtime
of trained networks. The most well-known method is
optimal brain damage (OBD) [9]. An overview of this
and other methods is found in [8]. In our experiments a
coarse pruning criterion is used – we simply remove all
weights smaller (in magnitude) than a threshold. It is
important that the network is retrained after pruning. This

training converges much faster than the original training,
and the retraining corrects most of the errors due to the
simplistic pruning criterion.

Unfortunately, pruning has no impact on training time
because it is applied after training. To reduce training
time we have experimented with sparsely connected
networks. Before training, there is no available
information about which connections are salient, so a
random set of connections must be selected. Of course,
this is in general not the optimal set, but as will be seen
in section 5, the resulting ANN may still be competitive.

A straight-forward, random connection scheme is to
consider all connections in a hypothetical, fully
connected network and let each be a connection in the
actual sparse network with probability φ (connectivity).
The expected number of connections in the sparse
network is then Nφ, where N is the number of
connections in the fully connected network. In [10] it is
pointed out that the sparse connectivity has the effect of
decoupling the output units, i.e., all output units are not
connected to the same hidden units. Results from several
comparative studies are reported, and sparsely connected
networks perform as well as, or better than both OBD
and fully connected networks.

In RNNs, the number of connections is proportional to
the square of the size of the hidden layer (the second
term of (3)). Thus, for large hidden layers, a very low
connectivity is necessary to reduce connections to a
manageable number. This reduces the network’s
functional capacity more than can be compensated for by
the increased number of hidden units.

To overcome the square relationship between the layer
size and the number of hidden units, we introduce
localized connectivity. In this scheme, recurrent
connections between unit u1 and u2 are added with the
probability

[]µ σ⋅ −e d u u1 2, / (4)

where d[u1,u2] is the distance between the units, µ is the
overall connectivity constant, and σ is a constant of
spread. Distance is defined simply by ordering the
hidden units and taking the absolute difference of the
ordering numbers. Thus, the self-loop connectivity is µ,
and σ controls how fast the connectivity decays with
distance in the layer. In this study, µ is always 1.0 and σ
is varied to control the number of connections.

5. TIMIT RECOGNITION RESULTS
An ensemble of sparsely connected ANNs have been
trained and evaluated on the TIMIT database. The ANNs
have varying connectivity for their three different types
of connections: 1) the connections from the input units,
2) the recurrent connections, and 3) the connections to
the phoneme output units. The networks were trained on
all training utterances except the “sa” sentences, and
evaluated on the core test set.

4

The results are shown in Figure 2. The underlined error-
rates clearly show how the fully connected network is
outperformed by sparsely connected ANNs with an equal
number of connections. A set of networks with 300
hidden units are evaluated to compare different sparse
connection schemes. The sweep over varying hidden
layer size from 100 to 600 units, with accompanying
decrease in error-rate, show the benefit of being able to
work with large hidden layers. Because of limited
computing resources, we have not yet trained ANNs with
more than 600 units, but because the error-rate is
constantly decreasing, we expect larger networks to
perform even better. The lowest rate, 28.3%, is already
better than all reported HMM-based results, e.g., [11]
(30.9%), but not quite as low as the currently lowest
reported RNN result [3] (26.1%).

The two rightmost columns of Figure 2 are designed to
test the idea of [10] that connection to higher layers
should be more sparse than lower layers, in order to

decouple the output units. Their hypothesis is supported
by our experiment and will be put to use in future
studies.

In a separate experiment, connection pruning was applied
to the networks, and it was found that with a weight
threshold of 0.08, the number of connections is reduced
by circa 50% for all networks. After retraining, the error-
rate had never increased by more than 1%.

6. CONCLUSIONS
A robust training scheme for high performing ANNs,
with manageable computational demands, have been
presented for phoneme probability estimation. In
phoneme recognition experiments, a fully connected
ANN was clearly outperformed by its sparsely connected
counterparts with equal or less connections, and the
lowest error-rate achieved, 28.3% is competitive also in
comparison with other systems.

100 300 300 300 300 300 300 300 100 200 300 450 600 300 300

20k

40k

60k

80k

100k

120k

140k

160k

number of
connections

hidden units

error rate 36.1% 33.1% 31.0% 29.1% 28.9% 32.3% 30.5% 29.1% 37.0% 31.1% 30.5% 29.0% 28.3% 28.7% 29.5%

connections to
output units

recurrent
connections

connections from
input units

fully
connected

{test of

decoupling

hypothesis

Figure 2. Phoneme recognition results for the core test set of the TIMIT database. The 39 symbol set, also used in [3] and
[11] is used. Error-rate is defined as the sum of insertions, deletions and substitutions per phone.

7. REFERENCES
[1] Elenius K. & Takacs, G., “Acoustic-phonetic recognition

of continuos speech by artificial neural networks”, STL-
QPSR 2-3/1990, pp. 1-44, KTH, Dept. of Speech, Music
and Hearing, Stockholm, Sweden, 1990.

[2] Bourlard H. & Morgan N., “Continuous Speech
Recognition by Connectionist Statistical Methods”, IEEE
trans. on Neural Networks, 4(6), pp. 893-909, 1993.

[3] Robinson A.J., “An application of Recurrent Nets to
Phone Probability Estimation”, IEEE trans. on Neural
Networks, 5(2), pp. 298-305, 1994.

[4] Waibel A., Hanazawa T., Hinton G., Shikano K. & Lang
K., “Phoneme Recognition Using Time-Delay Neural
Networks,” ATR Technical Report TR-006, ATR, Japan,
1987.

[5] Young S., Jansen J., Odell J., Ollason D. & Woodland P.,
“HTK – Hidden Markov Toolkit”, Entropic Cambridge
Research Laboratory, 1995.

[6] Ström “Continuous speech recognition in the
WAXHOLM dialogue system”, STL-QPSR 4/1996, pp.
67-95, KTH, Dept. of Speech, Music and Hearing,
Stockholm, Sweden, 1996.

[7] Ström N., “Development of a Recurrent Time-Delay
Neural Net Speech Recognition System”, STL-QPSR 2-
3/1992, pp. 1-44, KTH, Dept. of Speech, Music and
Hearing, Stockholm, Sweden, 1992.

[8] Thimm G. & Fiesler E., “Evaluating pruning methods” , In
1995 International Symposium on Artificial Neural
Networks, Proc. ISANN ‘95, pp. A2 20-25, National
Chiao-Tung University, Hsinchu, Taiwan, 1995.

[9] Le Cun Y., Denker J. S. & Solla S. A., “Optimal brain
damage”, In Advances in Neural Information Processing
Systems, II , ed: Touretsky D. S., pp. 589-605, San Mateo,
California IEEE, Morgan Kaufmann, 1990.

[10] Ghosh G. & Tumer K., “Structural adaptation and
generalization in supervised feed-forward networks”,
Journal of Artificial Neural Networks, 1(4), pp. 430-458,
1994.

[11] Lamel L. & Gauvain J. L., “High performance speaker-
independent phone recognition using CDHMM”, Proc.
EUROSPEECH, pp. 121– 124, 1993.

