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ABSTRACT

Auditory models reverse  processing techniques  would
have very useful applications in speech perception and
auditory models evaluation. This paper examines how we
can be benefit an Inner Hair Cell (IHC) model as a
compression and envelope detection section, in the
cochlear model inverse processing. Our proposed
inversion method, combines the reverse of  the Meddis’s
auditory neural transduction model with  Lyon's cochlear
model  to estimate the input signal to the inner ear from
its auditory nerve firings, with the acceptable quality.
Since this method uses neural firings or cleft contents as
an input and re-generates the original acoustic stimulus,
it is useful with any system generating auditory neural
firings. For example, using this method, we are able to
estimate the stimulus signal of the Nucleus Cochlear
Implant systems to investigate the transferred speech
quality without using the real patients.

1. INTRODUCTION
       
Computational models of auditory peripheral processing
have been popular for many years. But there have been
less work on auditory models inversion, which could be
used in auditory models evaluation and speech
enhancement applications. In the first cochlear model
inversion study, Daniel Naar [1] and Malcolm Slaney [2]
reverse processed the Lyon’s cochlear model, to
resynthesis the original signal from it’s  Correlogram.
Their primary target was to separate a sound from  noisy
background. Some earlier works outlines methods for
evaluating auditory models; one common technique is to
use the model as a pre-processor, or "front-end " to an
automatic speech recognizer. The model is then
considered to be improved when the recognition rate
improves. However the result of such testing will
inevitably be influenced by the recognizer characteristics
themselves. An alternative possibility is to calibrate the
model against human perceptual data, but problem of
language bias and task differences make this difficult.
Some earlier studies introduced the idea of testing by Fig.

1  Hybrid cochlear Model(reverse and forward ).

resynthesis  [3,4].  According to this  idea,  two different
acoustic signals having the same auditory representation
should sound equivalent in some important respect. It is
believed that the extent of the perceptual differences
between two such signal is a good measure of the model's
quality. Thus, evaluation could be performed by listening
tests without any necessity to consider the many
extraneous factors due to an automatic recognizer.
Following the works of Ray Meddis[5][11][12] in
Mechanical to Neural transduction in the auditory nerve
fibers , Malcolm Slaney and Daniel Naar [1][2] in Sound
re-synthesis from a correlogram, we propose a method
that combines an  auditory neural transaction model with
a suitable filter bank(i.e. cascade filter bank of Lyon’s
cochlear Model) to produce more realistic presentation of
the human inner ear characteristics in forward and
reverse models.
During the past three decades, a number of models of
primary auditory fiber activity have been developed
which generate a sequence of firings in time, in response
to a stimulating waveform. The most recent one, Meddis
model[5], is a simple and computationally efficient model
for neuro-transduction in inner hair cell. So, we used this
model as an automatic gain control (AGC) and half-wave
rectification (HWR) section of Lyon's Cochlear model [6]
for forward and reverse processing. The new hybrid
model has two sections, Meddis inner hair cell  and
Lyon's  filter bank (Fig. 1).
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2. COCHLEAR MODELS

The cochlear band-pass filters, the half-wave
rectification, and the automatic gain control are
combined in the processing performed by the ordinary
cochlear model.

2.1.  Ordinary Cochlear Models Structure.

However, all cochlear models  differ in their underlying
assumptions and structures, but they share three primary
characteristics [7].
• FILTERING : A broadly tuned cascade of  filters to

model the propagation of energy as waves on the
basilar membrane (BM).

• DETECTION: which simulates the HWR
characteristics of the IHC.

• COMPRESSION : which maps the widely varying
sound input levels into a limited dynamic range of
BM motion, IHC and auditory nerve (AN) fibers.

 
2.2.  Meddis Hair Cell Model

 In order to get better understanding of the IHC reverse
processing section, here is the block diagram of the
Meddis IHC forward model from his 1990 JASA paper
[5]. The model can be viewed in terms of the production,
movement, and dissipation of the transmitter substances
in the region of the hair cell and the auditory nerve fibers
The k(t) function is intend to reflect the permeability of
the membrane. It is given as the direct function of the
stimulus intensity S(t). The probability of spike can be
found by multiplying cleft contents c(t) to a constant h at
a given instance.
        Prob(event) = hc(t)dt
    

3. COCHLEAR MODEL INVERSION
    
In order to estimate the original time sequence of the
signal that entered the cochlear model from the auditory
nerve firings, all sections in the cochlear model must be
inverted.

3.1. Ordinary Cochlear Model Inversion

In the earlier inversion study[1][2], which was based on
Lyons cochlear model , separate AGC, HWR, and
filtering sections have been inverted.

3.2.  IHC Inversion Process

In the hybrid model inversion (Fig. 1.), to estimate the
original signal, Filtering and Meddis hair cell sections
have to be inverted. The following section explains the
necessary operations to estimate the input acoustic
stimulus from IHC section(Fig.2.) only for a single
channel.

Using Meddis model and his last parameter-set, we wrote
programs with MatlabTM to calculate the cleft contents (or
firing rates) and its reverse relations. Having c(t) (given
or calculated from forward processing), we used equation
(1) to calculate permeability function k(t). Substituting
c(ti) and calculated k(ti) in equations (2) and (3), we
compute the amount of the reservoirs q(ti+1) and w(ti+1) for
the next time slice ti+1 (ti+1=ti+ 1/SF). Then using equation
(4), we compute the s(ti) and start again with c(ti+1). At
the end of process, the regenerated signal has been stored
in the vector S(t).

4. EXPERIMENTS

Here, we outline the result of reverse process for three
experiments with different input stimulus. All
experiments and calculations have been done with
Matlabtm, Mathematicatm and Turbo Pascal programming
under Windows 95tm, and SUN-OStm, using SUN-Spark
Work stations and a Pentiumtm PC. To calculate the S(t)
from given c(t), we used the following equations in our
program with time  step dt  of  1/(Sampling Frequency) .

k(t) = (c(t+1)+c(t)(rdt+ldt-1))/q(t) (1)

q(t+1)=q(t)-k(t)q(t)+(xw(t)+y(M-q(t)))dt (2)

w(t+1)=w(t)+(rc(t)-xw(t))dt (3)
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The following  Meddis parameters have been used in the

        lc

    y(M-q)

  
              xw

       

     

dq/dt= y(M-q(t)) + xw(t)-k(t)q(t)
dc/dt= k(t)q(t)-lc(t)-rc(t)
dw/dt= rc(t)-xw(t)
k(t)= gdt(S(t)+A))/(S(t)+A+B) for  S(t)+A>0
k(t)= 0 for  S(t)+A <0

Fig.  2.  Meddis hair cell model, and it's differential
             equations.
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forward and reverse processing:
A=5, B=300, y=5.05, g=2000, l=2500, r=6580,
dt=1/SF,  x=66.31, M=1.
The initial condition of system is determined from the
equilibrium state of the system with no input:
q=c(l+r)/k(t); w=cr/x where k(t)=gA/(A+B).

4.1.  Pure Tone Sinusoidal Stimulus

In the first experiment, we used a 80 dB  1 kHz  sinusoidal
tone, as a stimulus  signal S(t) for the  Meddis model. The
generated data in this step c(t) have been saved and used
in the inversion process. At the IHC inversion process, we
used c(t) as input, and we generate permeability function
k(t), all reservoir contents, and stimulus signal S(t) (Fig.
3).
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Fig. 3 Re-generated  sinusoidal signal.

4.2.  Sound (Music) Stimulus

In the second experiment, we extracted data from a
22.254 kHz , 8 bit, PCM  WAV file. The data has been
used in forward processing to generate neural firing rates.
Here also we used the output c(t) to estimate the original
signal, S(t). Figures 4, 5 and 6 show the original,
compressed and  regenerated signal using inversion
process.

4.3.  Speech  Stimulus

In the third experiment, data was extracted from an 11
kHz  speech  WAV file. After adjustment of the zero line,
input signal has been regenerated. Surprisingly, the
estimated signal in the listening test, almost was not
distinguishable from the original one. Figures 7,8 and 9
show the original and regenerated speech signal wave
forms.

5. CONCLUSIONS

A cochlear model inversion method based on Meddis hair
cell model has been defined. In this study, a simple and
efficient method has been provided to achieve  acceptable
quality without using complex multiplicative and multi-
stage AGC and HWR of the earlier work. Regarding to
the outputs of the reverse processing, generated signal

from various stimulus types are barely degraded.
Regenerated positive part is almost the same as original
one. We find this method less accurate in very high
stimulus amplitude (Fig. 3, with distortion) and low
sampling frequency (Fig. 8, with poor compression ).   In
overall, the method shows its ability to re-generate any
input stimulus to the inner ear with acceptable quality.
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Fig. 4 Original stimulus PCM, 8bit WAV signal.(Ding!
           sound)  over discrete time step dt(1/SF ).
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Fig. 5 Half wave rectified and compressed output of  the
forward processing, which defines the contents of
the synaptic cleft area or c(t) in discrete time dt .
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Fig. 6    HWR  version of the  estimated  stimulus signal
             using IHC inversion process.(Time step=1/SF ).
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Original speech stimulus

Fig. 7 Original stimulus WAV signal (word Pan), over
           discrete time step dt.
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Fig. 8 Half Wave Rectified and compressed output of  the
forward processing, which defines the contents of
the synaptic cleft area or C(t), over discrete time step
dt (dt=1/SF).
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Fig. 9 HWR version of the estimated speech   signal.
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