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Abstract

We present an approach to statistical part-

of-speech tagging that uses two di�erent

tagsets, one for its internal and one for its

external representation. The internal tagset

is used in the underlying Markov model,

while the external tagset constitutes the

output of the tagger. The internal tagset

can be modi�ed and optimized to increase

tagging accuracy (with respect to the exter-

nal tagset). We evaluate this approach in an

experiment and show that it performs sig-

ni�cantly better than approaches using only

one tagset.

1 Introduction

The task of part-of-speech tagging is to assign a

unique syntactical category (part-of-speech tag) to

each word of an input stream. It is used as a compo-

nent in parsing, for recognition in message extraction

systems, for generating intonation in speech produc-

tion systems, and many others.

Our work focuses on statistical part-of-speech tag-

ging that is based on an underlying n-gram or Markov

model. Tags are assigned by maximization of lexi-

cal probabilities p(wordijtagi) and contextual prob-

abilities p(tagijtagi� 1; : : :). These probabilities are

learned from a training corpus and are expected to be

the same in unseen data (cf. (Church, 1988), (Cut-

ting et al., 1992), (Jelinek, 1990), . . . ).

It is well known that the tagger misses information

when it can only see surrounding tags and work with

information contained in these tags. This is especially

true for small contexts and small tagset sizes. Gen-

erally, more knowledge about a larger context helps

in disambiguating the category of the current word

(Sch�utze and Singer, 1994; Brants, 1995), but larger

contexts have to be selected with care in order not to

increase the sparse data problem. Also, the choice of

a di�erent tagset heavily in
uences accuracy (Elwor-

thy, 1995).

In some cases, �ner grained categories of the words

in the context deliver the information needed for dis-

ambiguation. This fact is exploited in chunk pars-

ing (Abney, 1996). The actual implementation of the

parser works on tag �xes that change tags for partic-

ular words, i.e., the parser does not always use the

original tag but a modi�ed one based on the lexical

entry of the corresponding word.

We concentrate on this point, and introduce an in-

ternal tagset for the representation of the Markov

model that contains more information than the ex-

ternal tagset.

2 Internal and External Tagsets

Current work on part-of-speech tagging assumes that

there is just one tagset: it is used for annotating the

training corpus, and it is also used during actual tag-

ging. But this is not necessarily the case. The man-

ually corrected corpus may be build independently

of a particular application, e.g., those described and

used in (McEnery et al., 1994), (Leech et al., 1994),

(Marcus et al., 1994), and (Skut et al., 1997).

Additionally, di�erent applications impose di�erent

needs on the granularity of the tagset: the tags used

by a parser are preferably di�erent from those used

by a speech generation component.

A commonly used procedure in cases where the cor-

pus contains more information than needed is to strip

all additional information from the corpus and then

use the remaining data to generate a model. The

steps of this procedure are shown for part-of-speech

tagging on the left side of �gure 1.

We propose a second method, shown on the right

side of �gure 1. It builds the model from all infor-

mation contained in the corpus, assigns the complete

set of information during application, and strips su-

per
uous information as its last step.

On the one hand, this method increases the number

of categories and thereby increases the sparse data
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Figure 1: Two ways for handling additional informa-

tion in the training corpus: stripping ! training !

application (left) vs. training! application! strip-

ping (right).

problem. But on the other hand there is more in-

formation encoded in the tags, and this information

should help to disambiguate words in context. This

can increase the overall tagging accuracy even if the

additional information is assigned less reliably than

the basic information contained in the tagset, since

the additional information is stripped before emitting

the tag.

We use the Susanne corpus for our investigations,

which is part-of-speech tagged with a very �ne-

grained tagset comprising 424 tags (Sampson, 1995).

Can we exploit the information contained in this �ne-

grained tagset even if we concentrate on the tagging

accuracy for a smaller tagset?

To answer this question, we consider four tagsets:

the original tagset A, consisting of 424 tags; tagset B,

159 tags; tagset C, 61 tags; and tagset D, 14 tags. Ta-

ble 1 shows examples of the tags used in these tagsets

and gives an impression of the granularity. Each tag

in a larger tagset uniquely identi�es a tag in a smaller

tagset, i.e., the larger tagsets are proper extensions of

the smaller ones.

In the following, two of these tagsets are selected at

a time and our tagger will employ the larger one as its

internal tagset TI , and the smaller one as its external

Table 1: Sample elements of the four tagsets used

in this paper, with di�erent granularities of encoded

information. The total counts of tags in the tagsets

are shown in brackets.

Description A (424) B (159) C ( 61) D (14)
. . .
her as
possessive APPGf APPG AP pron
my as
possessive APPGi1 APPG AP pron

our APPGi2 APPG AP pron
. . .
sing count
noun NN1c NN1 NN noun
sing mass
noun NN1u NN1 NN noun
plur
noun NN2 NN2 NN noun
. . .
modal verb
past tense VMd VM VM verb
model verb
present t. VMo VM VM verb
. . .
intr verb
base form VV0i VV0 VV verb
trans verb
base form VV0t VV0 VV verb
intr verb
past tense VVDi VVD VV verb
. . .

tagset TE. The �rst one, TI, is used for training,

in the internal representation of the Markov model

and during tagging, but before emitting the tags are

mapped to the external tagset TE (according to the

right half of �gure 1).

If TI and TE are identical, the tagger performs like

a standard tagger and nothing is changed. But if TI is

a proper extension of TE (i.e., each tag in TI uniquely

identi�es a tag in TE ; e.g., both singular and plural

noun in TI identify a noun in TE), we use information

that is not contained in the external tagset.

So, instead of calculating

argmax
t1:::tn

nY

j=1

p(tj jtj�1 : : :)p(wjjtj)

wj 2 words, tj 2 TE , we now calculate

argmax
t0
1
:::t0

n

nY

j=1

p(t0j jt
0

j�1 : : :)p(wjjt
0

j)

t0j 2 TI , thereafter map the tags

tj = f(t0j )



Table 2: Results of the standard tagging experiment

for each of the four tagsets. The table shows the size

of the tagset, the number of tags per word before

disambiguation, the number of unknown words, the

tagging accuracy, and the standard deviation.

avg avg. average std-

tagset size tgs/wd unkn. accuracy dev.

A 424 5.5 8.0% 93.8% 0.8

B 159 3.8 8.0% 95.1% 0.7

C 61 2.9 8.0% 95.0% 0.7

D 14 2.3 8.0% 94.5% 0.8

and emit tj .

The additional information contained in TI should

be useful for disambiguation, thus it should increase

the tagging accuracy. The experiments of the follow-

ing section are intended to test this hypothesis.

3 Experiments

We have performed our experiments on the Susanne

corpus (Sampson, 1995), which consists of approxi-

mately 150,000 tokens and is annotated for part of

speech using 424 di�erent tags. These tags can be

grouped to form three smaller tagsets, consisting of

159, 61, and 14 tags (cf. �gure 1 for examples).

Our tagger is a standard statistical, trigram-based

part-of-speech tagger. The optimalMarkovian path is

calculated using the Viterbi algorithm. Sparse data is

handled by linear interpolation of unigrams, bigrams,

and trigrams. The weights for the interpolation are

derived by deleted interpolation (Brown et al., 1992).

The distinction of upper and lower case of characters

is ignored. Unknown words are handled by using a

su�x trie according to (Samuelsson, 1993).

The performance of the tagger in the standard tech-

nique of using a single tagset is shown in table 2. In

order to yield reliable estimates of tagging accuracy,

tagging is repeated 15 times for each tagset. Each

time, 140,000 tokens of the corpus are used for train-

ing, and the rest (10,000 tokens) is used for testing

(training and test part are ensured to be disjoint).

The table shows the tagset, its size, the average num-

ber of tags per word before disambiguation in running

text (this includes the number of tags for unknown

words, which is generally much larger than for known

words, but heavily depends on the su�x), the per-

centage of unknown words (i.e., words that were not

seen during training but occur during testing), the

average tagging accuracy and its standard deviation

calculated from the 15 test runs for each tagset.

We see that the tagger performs best on the

medium-sized tagsets, for which the accuracy is state-

Table 3: Accuracy and standard deviation when using

di�erent tagsets for the internal and external repre-

sentations. As the baseline, we used identical internal

and external tagsets.

tagset external tagset

(size) A (424) B (159) C ( 61) D ( 14)

base- 93.8% 95.1% 95.0% 94.5%

line 0.8 0.8 0.7 0.7

in- A (424) base- 95.6% 95.9% 96.1%

ter- line 0.7 0.7 0.7

nal B (159) { base- 95.4% 95.8%

{ line 0.7 0.7

tag- C ( 61) { { base- 95.4%

set { { line 0.7

of-the-art, and that performance decreases both for

the very large and the very small tagset. There is

probably insu�cient training data for tagset A (424

tags), and insu�cient information for disambiguation

contained in tagset D (14 tags).

Note that accuracy for tagsets B and C are almost

identical despite the di�erent tasks: there are much

fewer tags to choose from when using tagset C, and

the average number of tags per word in running text

before disambiguation is lower (2.9 as opposed to 3.8

for tagset B), thus a priori the chance of making an

error is lower for tagset C, but this is compensated

for by the di�erent amounts of information encoded

in the tags.

In the second set of experiments we use the same

tagger and the same tagsets, but before emission the

tags are mapped to a smaller tagset. This means that

training and the internal representation use the larger

tagset, but our output employs the smaller tagset.

We thereby simulate a training corpus that is anno-

tated with a larger tagset, and measure the accuracy

for a tagset with lower granularity.

The tagging accuracies of the di�erent combina-

tions and the standard deviations are shown in table

3. Each combination of tagsets is tested 15 times, us-

ing 140,000 tokens for training and the rest (10,000)

for testing. Again, training and test parts are ensured

to be disjoint.

As an example, the table entry in row A and col-

umn C (95.9%) shows the accuracy of a model that is

trained using tagset A (424 tags), and that emits tags

of tagset C (61 tags). The accuracy is always mea-

sured w.r.t. the external tagset. The result is signi�-

cantly better than using tagset C for both the internal

and external representation, shown as the baseline,

which only yields 95.0% accuracy.

Comparing the results in table 3 with the baseline,

we see that the tagging accuracy when using a larger



internal representation is always higher than when us-

ing the same internal and external representation. We

also see that the larger the internal tagset the larger

the accuracy for a smaller external tagset (within the

bounds of the available tagsets). The increase in ac-

curacy depends on the sizes of the involved tagsets,

and ranges from 0.4 to 1.6 percent.

4 Conclusion

We have investigated the bene�ts of using an addi-

tional tagset for the internal representation of a part-

of-speech tagger that is invisible to the external appli-

cation. All information contained in the �ne-grained

categories of the internal tagset can be used for tag-

ging, even if it is not needed as the output of the

tagger. Using the information and stripping it before

emitting the tags signi�cantly increases the tagging

accuracy (between 0.4 and 1.6% in our experiments).

As a consequence, e�orts in manual annotation

yield better language models the more information

they assign to a text corpus.

Our experiments with internal and external tagsets

of di�erent sizes show that the bene�t depends on the

involved tagsets. Thus, given an external tagset, we

assume that there is an optimal internal representa-

tion for the Markov model, and further work concerns

the automatic modi�cation of the internal tagset in

order to �nd an optimal internal representation.
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