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ABSTRACT

Language modeling, especially for spontaneous speech,
often suffers from a mismatch of utterance segmentations
between training and test conditions. In particular, training
often uses linguistically-based segments, whereas testing
occurs on acoustically determined segments, resulting in
degraded performance. We present an N-best rescoring al-
gorithm that removes the effect of segmentation mismatch.
Furthermore, we show that explicit language modeling of
hidden linguistic segment boundaries is improved by in-
cluding turn-boundary events in the model.

1. THE SEGMENTATION PROBLEM IN
LANGUAGE MODELING

One of the problems encountered in speech recognition
on continuous, spontaneous speech is the segmentation
of long waveforms. Because current recognizers prefer
short waveform segments for best performance and to limit
computational resources, conversation-length waveforms
are typically pre-segmented using simple acoustic criteria,
such as locations of long pauses and turn switches. This
creates several problems for language modeling:

e The segmentation algorithm used (including its pa-
rameters) influences the statistics embodied in the
language model (LM), creating a potential mismatch
between training and test set. Strictly speaking, one
would have to resegment the training data, recreate
the word-level transcriptions, and retrain the language
model every time the segmentation process is modi-
fied.

e The acoustic segmentation typically yields units that
are not linguistically coherent, and hence sub-optimal
for language modeling. Language modeling research
on spontaneous speech [10] shows that N-gram LMs
based on complete utterance units give lower per-
plexity than those based only on acoustic segmenta-
tions. Furthermore, work reported in [12] showed that
the word error rate on spontaneous speech can be re-
duced simply by resegmenting the speech at linguistic
boundaries and using a language model based on the
same segmentation.

e Explicit modeling of spontaneous speech phenomena
such as disfluencies also requires modeling of lin-
guistic (as opposed to acoustic) segment boundaries

[15]. Similarly, sophisticated LMs modeling syntac-
tic structure typically assume complete sentences as
their input [12].

The following excerpt from the Switchboard corpus
[2] illustrates the discrepancies between acoustic and lin-
guistic segmentations. Linguistic segment boundaries are
marked by <s>, whereas acoustic boundaries are indi-
cated by / /. A subset of acoustic boundaries corresponds
to turn boundaries, indicated by <t>.

B: <t> Worried that they’re not
going to get enough attention?
<s> //

A: <t> Yeah <s> and, uh, you
know, colds and things like that

get —- //
B: <t> Yeah. <s> //
A: <t> -- spread real easy and

things, <s> but, and they’re
expensive <s>

and, // course, // there’s a lot
of different types of day care
available, too, // you know,
where they teach them academic
things. <s> //

B: <t> Yes. <s>//

As can be seen, linguistic and acoustic boundaries differ
widely. Notice in particular how linguistic segments can
run across turn boundaries.

2. HIDDEN SEGMENTATION MODELING

To overcome a segmentation mismatch between training
and test conditions we can model segment boundaries as
hidden events in the language model. We ignore the overt
segment boundaries in the test material, and compute the
probability of a word sequence assuming that non-overt
segment boundaries (e.g., sentence boundaries <s>) can
occur between any two words. Computationally, this is
achieved by associating a hidden state (S or NO-S) with
each word, corresponding respectively to the presence or
non-presence of a hidden segment-boundary immediately
preceding the word. If the language model is Markovian,
as in the case of an N-gram model, we obtain a hidden
Markov model, and the total sentence probability can be
computed by a forward algorithm [9]. A corresponding
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Figure 1. Lattice incorporating N-best hypotheses for all
segments.

Viterbi algorithm can be used to find the most likely se-
quence of hidden S and NO-S states, corresponding to
the most likely segmentation of a word sequence accord-
ing to the language model. This is the basis of a simple
automatic segmentation algorithm, and can been used to
segment spontaneous speech transcripts into linguistic ut-
terance units where hand-segmented transcripts are not
available [14].

An approximate version of the hidden segmentation lan-
guage model that does not require the forward algorithm
has been used previously to study the effect of segmenta-
tion on language model perplexity [5].

3. N-BEST LIST RESCORING

To apply the hidden segmentation model to the output
of a speech recognizer, we first generate N-best lists for
each of the acoustic segments X, X5, ..., Xpr. These N-
best lists are generated using a standard language model
operating on one acoustic segment at a time. We based
our implementation of the algorithm on N-best lists [8],
but with minor changes the same methods could be applied
to the rescoring of word lattices.

Let Hi;, 7 = 1,..., N, be the N best hypotheses for
the ith acoustic segment. The standard N-best scoring
algorithm considers each acoustic segment in isolation:

o Standard rescoring: For each segment : =
1,..., M, find the hypothesis that has highest pos-
terior probability based on X; alone:

argmax P(H;;| X;)
ij

Pim(Hij) Pac(Xs|Hij)

= argmax

. P(Xi)
= ar%{max Pim(Hij) Pac(Xi|Hij)
v

Py is a standard language model operating on indi-
vidual segments; Pac is the acoustic model.

The goal of the new rescoring algorithms is to take the
combined N-best hypotheses into account when choos-
ing the best hypothesis for each segment, by applying
the language model across acoustic segment boundaries.
To this end, we combine all H;; into a lattice (Fig-
ure 1) representing all possible combined hypotheses for
X1, X3, ..., Xsr. On this lattice, rescoring is performed
using one of two dynamic programming methods:

e Viterbi rescoring: Find the sequence of hypothe-
ses H;;+ and segmentations s;;+ that gives the high-
est overall probability under the combined acoustic
model and the hidden segmentation language model.
Let H; = {Hz‘j:,si]’:,i =1,.. .,M} be the com-
bined hypothesis including its segmentation, and let
X = (Xi1,...,Xm) be the combined acoustics.
Viterbi rescoring finds

argmax P(H;|X)

= argmax Pim(H,) Pac( X |H,)
H, P(X)

= argmax PLm(H, ) Pac(X|Hy)
H

Here Py is the hidden segmentation language model;
it operates on the combined hypothesis H, irrespec-
tive of the acoustic segment boundaries between the
Hij.

e Forward-backward rescoring: For each acoustic
segment X, find the hypothesis that has the highest

posterior probability given the acoustics of the entire
conversation. Thatis, forall: =1,..., M:

argmax P(H;;|X)
Hij

= argmax E
Hij Hos
i H,HieH,

Pim(H,) Pac(X |Hs)
T,

P(H,|X)

= argmax
Hij  H,H;eH,

Z Pim(H)Pac(X |Hs)
H,:H,;€H,

= argmax
H;;

(The summation is over all combined hypotheses H
that have H;; as the part corresponding to the ith
segment.)

Forward-backward rescoring is theoretically the better
way of minimizing the per-segment error. This is because
word error is additive over segments, and the error on
each segment hypothesis is minimized by maximizing its
posterior probability of correctness [13]. Viterbi rescoring
is somewhat simpler and cheaper computationally; it also
computes a best segmentation for the chosen hypotheses.

The acoustic models used in both algorithms are the
same as in standard N-best rescoring. This is because cur-
rent acoustic models exhibit no long-range dependencies,
so that

M
Pac(X|Hy) = [ ] Pac(X:lHij2)

i=1

In the future, however, acoustic models could incorporate
global characteristics of speech, such as speaking mode
[7], in which case they, too, should operate across segment
boundaries.



4. EXPERIMENTS

4.1. Data and Language Models

We tested the concepts and algorithms described here us-
ing the Switchboard corpus of spontaneous conversational
speech [2]. We trained standard trigram language mod-
els with backoff smoothing [3] on 1.8 million words from
that corpus. Two segmentations of the training data were
used. In one case, the full training corpus was acoustically
segmented, placing segment boundaries at turn bound-
aries and at pauses of at least 0.5 seconds. A second
segmentation was available from the Linguistic Data Con-
sortium, consisting of transcripts with hand-annotated lin-
guistic segment boundaries [4].

However, only 1.4 million words were available in hand-
segmented form. We therefore trained an automatic lin-
guistic segmenter on this data, and used it to segment the
remaining training data. This method had previously been
shown to give good segment boundary detection accuracy
on this corpus (85% recall, 3% false alarms) [14]. The
hand-segmented and the automatically segmented training
data were pooled, resulting in a linguistic segment lan-
guage model based on the same amount of training data as
the acoustic segment language model.

The test set consisted of 25 Switchboard conversations
(24,000 words) and was acoustically segmented. For each
segment, an N-best list of up to 2000 hypotheses was gen-
erated, using SRI’s Decipher(TM) recognizer with contin-
uous density genonic HMM acoustic models [1, 6]. For
rescoring purposes, each side in a Switchboard conversa-
tion was treated as one stream of speech to be recognized,
separate from the opposite side.

4.2. Complexity Issues

The time complexity of the dynamic programming algo-
rithm scales with the square of the number of N-best hy-
potheses. To keep the computation in reasonable bounds,
we first reorder the hypotheses for each segment in isola-
tion, using a standard trigram model, and then perform dy-
namic programming (Viterbi or forward-backward) only
on the top 20 hypotheses for each segment. Experiments
showed that the improvements from including more hy-
potheses in the dynamic programming were negligible.

4.3. Results

First we compared word error performance under four
different segmentation conditions and scoring algorithms:

(1) matched acoustic segmentation in training and testing,
using the standard rescoring algorithm;

(2) mismatched segmentations, using the standard algo-
rithm (language model trained on linguistic segments,
rescoring on acoustic segments);

(3) mismatched segmentations, using the hidden
linguistic-segment language model with the Viterbi
rescoring algorithm.

(4) mismatched segmentations, wusing the hidden
linguistic-segment language model with the forward-
backward rescoring algorithm.

Results are shown in Table 1.

Table 1. Word error result for three different segmentation
conditions/rescoring methods

Model/Rescoring method WER
(1)  Acoustic trigram/standard 53.7
(2) Linguistic trigram/standard 54.4
(3) Linguistic trigram/Viterbi 53.8
(4) Linguistic trigram/Forward-backward | 53.8

The absolute word error rate (WER) differences are
small; yet a Sign test on the utterance-level word errors
reveals a significant difference between conditions (1) and
(2) (p < 0.0001), and between (2) and (3) (p < 0.0005),
though not between (1) and (3).

Experiment (2) confirms that a segmentation mismatch
does indeed lead to degraded language model perfor-
mance. Experiment (3) shows that the hidden segmenta-
tion model can effectively compensate for this mismatch,
yielding results that are close to those of the matched-
segmentation language model. The comparison of Viterbi
and forward-backward rescoring (Experiment 4) suggests
that there is no practical advantage in using the latter, even
though it is theoretically superior in optimizing utterance
error.

4.4. Modeling Turn Boundaries

When comparing acoustic and linguistic segment language
models one has to bear in mind that acoustic segmenta-
tions are based on turn boundaries and pauses, which con-
stitute potentially valuable information for modeling the
distribution of words. For example, certain words, such
as backchannel responses (“Yeah”, “Uh-huh”) are more
likely after turn boundaries. The linguistic segment model
does not have access to these cues, and is therefore at an
inherent disadvantage. This reasoning is consistent with
results showing that explicit language modeling of pauses
in Switchboard improves recognition accuracy [16].

The obvious solution to this problem is to include non-
lexical cues such as turn boundaries and pauses in the
linguistic segment language model. Since the N-best lists
available to us did not contain pauses we decided to model
turn boundaries only, which can be inferred from the seg-
ment boundary times. The linguistic segment language
model was rebuilt from transcripts containing turn bound-
ary tags <t>, i.e., the <t> tag was treated as a regular
word. Both the original and the turn boundary model were
compared using the Viterbi rescoring method; results are
shown in Table 2.

Table 2. Word error results with and without turn boundary
modeling

Model WER
Linguistic trigram 53.8
Linguistic trigram with turns | 53.2

As expected, explicit turn boundary modeling yields
the better language model; the reduction in WER is small



(0.6% absolute), but again highly significant (p < 0.0001).
Note that it is not meaningful to compare language model
perplexities, as the two models differ in the number of both
word types and tokens.

5. CONCLUSIONS AND FUTURE WORK

We showed that a hidden segmentation model can be
used effectively in N-best list rescoring to overcome the
mismatch between acoustic and linguistic segmentations
in language modeling. The algorithm used is based on
Viterbi or forward-backward rescoring of conversation-
length recognition hypotheses, i.e., across acoustic seg-
ment boundaries. In particular, we showed that this
method allows a language model trained on linguistic
segments to achieve the same performance on acousti-
cally segmented test data as a language model trained on
matched acoustic segments. Furthermore, the linguistic
segment model was improved further by modeling turn
boundaries explicitly.

The work to date suggests a number of promising contin-
uations. We expect further improvements by incorporating
other non-lexical events, such as pauses, into the linguis-
tic segment language model. We are also investigating a
conversation-level language model that considers the turns
of both speakers (rather than treating each conversation
side as a monologue). This should capture frequent utter-
ance/response pairs, as well as collaborative completions,
where one speaker finishes the other’s utterance. Finally,
language modeling of segment and turn boundaries should
be accompanied by an explicit modeling of the prosodic
features of such events. We have started work on the com-
bined prosodic and language modeling of hidden events
[11], which we plan to extended for the purpose of N-best
rescoring.
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