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ABSTRACT

This paper describes a method for using intonation to
reduce word error rate in a speech recognition system
designed to recognise spontaneous dialogue speech. We
use a form of dialogue analysis based on the theory of
conversational games. Different move types under this
analysis conform to different language models. Differ-
ent move types are also characterised by different into-
national tunes. Our overall recognition strategy is first to
predict from intonation the type of game move that a test
utterance represents, and then to use a bigram language
model for that type of move during recognition.

1 INTRODUCTION

This paper describes a method for using intonation to re-
duce word error rate in a speech recognition system de-
signed to recognise spontaneous dialogue speech. Our
experiments are on the DCIEM Maptask corpus [2], a
corpus of spontaneous task-oriented dialogue speech.

Our dialogue analysis is based on the theory of conver-
sational games first introduced by Power [9] and adapted
for Maptask dialogues in Carletta et al. [3]. Conversa-
tional games are conventional sequences of acts, such
as question - answer - acknowledgement, or, indeed, re-
quest - non-linguistic-action - acknowledgement. We dis-
tinguish 12 types of individual acts, which are termed
“moves” in the conversational games. We show in sec-
tion 4 that if a separate bigram language model is trained
for each move type, the bigram entropy for most types is
lower than the entropy for a general bigram model. Thus
move-specific grammars are more constrained than gen-
eral language models. Our overall recognition strategy
is first to predict the type of game move that a test utter-
ance represents, and then to use a bigram grammar for
that type of move during recognition.

This work had its origin in the intuition, borne out
in [6], that different types of move are characterised
by different intonational tunes. Not that there is a per-
fect one-to-one correspondence between move types and
tunes, but rather that intonation should help to distinguish

among the various move types that can occur at a given
point in a game.

For instance, a checking move like “Now, you’ve got
an old barn on your map, don’t you?”, that asks the ad-
dressee to confirm something that the speaker is pretty
sure is true, expects an affirmative answer without much
intonational marking. A negative reply or a request for
clarification would have more prominent pitch markings.

So we expect the combination of intonation and dia-
logue context to be a good predictor of move type. How-
ever, in this paper we investigate the extent to which in-
tonation alone can act as a useful predictor of move type,
and hence as a constraint for language modelling.

2 DATA

The experiments here use a subset of the DCIEM Map-
task corpus. This is a corpus of spontaneous goal-
directed dialogue speech collected from Canadian speak-
ers. The data files were coded using the conversational
game analysis and split into smaller more manageable
files, with one move per file. The files were also hand la-
belled with the intonation scheme described in section
3.1. 20 dialogues (3726 moves) were used for train-
ing, and 5 dialogues (1061 moves) were used for test-
ing. None of the test set speakers were in the training
set. The intonation recogniser, the move recogniser, the
language models and the HMM phone models were all
trained from the same training data.

3 MOVE TYPE DETECTION FROM
INTONATION

3.1 Intonational Event Recognition
Intonation is characterised using 4 basic intonational la-
bels: a for pitch accents, b for boundaries, c for con-
nections and sil for silence. The a and b labels are called
intonational events and represent the linguistically signif-
icant portion of the intonation contour. c is used simply
to fill in parts of the contour which are not an event or si-
lence. In addition, a compound label ab is used when an
accent and boundary are so close they overlap and form
a single intonational event.

In this system, unlike others such as ToBI [12], there
are no distinct categories of pitch accents and bound-



aries. Discrete intonational categories have been avoided
for a number of reasons. Firstly, even on clean speech,
human labellers find it notoriously difficult to label the
categories reliably, and the reliability drops further for
spontaneous speech. In a study on ToBI labelling [8], la-
bellers agreed on pitch accent presence or absence 80%
of the time, while agreement on the category of the ac-
cent was just 64% and this figure was only achieved by
first collapsing some of the main categories (e.g. H* with
L+H*). Secondly, the distribution of pitch accent types
is often extremely uneven. In a portion of the Boston Ra-
dio news corpus which has been labelled with ToBI, 79%
of the accents are of type H*, 15% are L*+H and other
classes are spread over the remaining 6%. From an in-
formation theoretical point of view, such a classification
isn’t very useful because virtually everything belongs to
one class, and therefore very little information is given
by accent identity. Thirdly, recognition systems which
have attempted to automatically label intonation usually
do much better at the accent detection task than at clas-
sifying the accents. Ross and Ostendorf [10] describe a
system which is very successful at pitch accent detection
(85%-89%), but from examination of the confusion ma-
trix, is it clear that the system is really only detecting high
(the family of H*) accents accurately - the fact that other
types are difficult to detect and are often confused with
high accents doesn’t affect the score too much because
of the overwhelming proportion of high accents in their
data.

Thus we choose a single category of accent, because
both human and automatic labellers find it difficult to dis-
tinguish more, and because the amount of information
obtained even if accuracy were high would be small. To
put it another way, in practical situations the ToBI system
more or less equates to a single pitch accent type anyway
- all we have done is to make this explicit.

However, this is not to say that we believe that all pitch
accents are identical, rather that current categorical clas-
sification systems aren’t suited for our purposes. To clas-
sify pitch accents, we use 4 continuous variables collec-
tively known as tilt parameters [14]. These are start F0,
which is the F0 value at the start of the event; amplitude,
a measure of the F0 excursion of the event; duration (in
time), and tilt, a continuous dimensionless parameter ex-
pressing the shape of the event (a value of -1 means the
event is a pure fall, +1 means a pure rise and values be-
tween indicate the event has a rise and fall). These values
can be calculated automatically give the approximate lo-
cation of a event (accent or boundary) and the F0 contour.

Our automatic event detector is based on a continu-
ous density HMM system. Each utterance is represented
acoustically by F0 and energy, and their first and sec-
ond derivatives. A single context-independent model is
trained for each of the main label categories. The system
is trained on hand labelled data.

We assess performance by measuring how well the
hand labelled test set matches the output of the recog-
niser. Only accents and boundaries are counted as si-

lence is unimportant and connections are where they are
as a consequence of accent and boundary placement and
hence are redundant. For an automatically labelled event
to count as correct, it must overlap a hand labelled event
by at least 50%. Using this metric the performance of the
recogniser is 74.3% correct with an accuracy of 29.4%.
The low accuracy is almost certainly a result of the data
being spontaneous and speaker independent: an equiv-
alent speaker dependent system trained on part of the
data gave 87% correct and 63% accuracy, while a system
trained on fluent “simulated dialogue” speech gave 85%
correct with 76% accuracy. We are currently examining
speaker normalisation techniques which will hopefully
increase performance on the speaker independent data.

3.2 Move Detection

It is generally accepted that intonation contours do not
consist merely of a string of intonation events, but have
an internal structure. For example, the British School
[4] divides the contour into head, nucleus and tail and
Pierrehumbert and Ladd have also proposed finite state
grammars specifying possible sequences of intonational
events [7]. Rather than using deterministic finite state
networks, we adopt a stochastic approach by adding
probabilities to the networks, and use hidden Markov
models. Each state of these HMMs is intended to cap-
ture the characteristics of a different part of the intonation
contour (e.g. head, nucleus).

We have postulated that different types of move will
have different intonational characteristics and use a dif-
ferent HMM to model the intonation of each type of
move. As observations, the HMMs use the the output
from the intonation event recogniser, which consists of a
sequence of vectors of tilt parameters. Each vector repre-
sents a single intonational event. A three state, left-right
continuous density HMM is trained for each move.

The move type recogniser is combined with an N-gram
model, which gives the a priori probability of a sequence
of moves occurring. To date we have only implemented
a unigram model in the full system, but preliminary ex-
periments have shown that move bigrams improve per-
formance by making use of the fact that moves follow
one another with some degree of predictability (e.g. a
reply-yes or reply-no is the most common response to a
query-yes/no).

The baseline system recognises 34% of moves cor-
rectly. By adjusting the grammar scaling factors of the
unigram this increases to 38%. Again we believe that
speaker variability is a major factor in producing errors:
in a speaker dependent study performance was around
55%. We achieved some increase in performance by sim-
ply normalising the tilt feature vectors for each speaker,
but it this does not remove all speaker specific effects.

Given the original theoretical motivation for using
HMMs to model intonational tunes, we conducted addi-
tional experiments involving the initialisation in training
of particular events to specific states, namely pre-nuclear
events (head) to state 1, nuclear accents to state 2 and



boundary events (tail) to state 3. This reflects the British
School’s traditional intonation contour structure. The re-
sults remained the same at 38% correct. Informal inspec-
tion of the HMM states indicates that state 2 of the mod-
els does assign higher probability to large pitch excur-
sions than the other states, and so it is to some extent
modelling nuclear accents.

4 MOVE TYPE SPECIFIC LANGUAGE
MODELLING

To test our hypothesis that each move type has a dis-
tinct language model, we estimated backed off bigram
[5] language models for each of the 12 types. The train-
ing/testing sets for the language models were the same as
those used for other parts of the system. The number of
training tokens per move type varied from 300 to 8000
and the vocabulary size is 900. A general backed off
bigram was also estimated on all training data ( 24 000
tokens).

The sentences in the test set were grouped into 12 sub-
sets depending on their move type. The perplexity of
the general bigram was calculated and compared with
the perplexity of the appropriate move specific bigram
on each subset. The perplexities of the various language
models on the test set are given in Table 1. The perplex-
ity based on always using the appropriate move-specific
language model appears in the table as “100% detection”.

In many cases the perplexity of the move specific bi-
grams was significantly lower than that of the general bi-
gram. The overall perplexity when using move-specific
grammars is slightly lower than when using the general
grammar. By using the general model for the move types
where it did better, the overall perplexity can be further
reduced – this is shown in the table as “best choice”.

The amount of data available to estimate the move type
specific language models (mean 2 000 tokens per move
type) is not really adequate. To gauge the effect of this
data shortage, we generated a language model on just

of the training data ( 2 000 tokens). This gram-
mar has much higher perplexity than any other language
model.

grammar perplexity
general grammar all data 27.66

data 43.14
move specific 100% detection 27.08

best choice 25.55

Table 1. Perplexities of the various language mod-
els

5 RECOGNITION EXPERIMENTS

5.1 Recogniser

A standard HMM-based speaker-independent cross-
word 8-mixture triphone speech recognition system was
used in all experiments. We use several special “words”
for non-speech and word sequences. Whilst these are
treated like any other word for language modelling and

recognition purposes, they are ignored in the calculation
of recognition accuracy.

5.2 Experiments

The general-purpose language model was used as a base-
line, and achieved 61.3% word accuracy.

We then used move type specific language models. In
the first experiment, the correct move type was used for
each test utterance (100% move detection), and in a sec-
ond experiment the automatic move type recogniser (see
section 3.2) was used. In this second experiment, only
the most likely move type for each utterance was consid-
ered. This thresholding is not ideal, and is discussed in
section 6. For comparison, we also used the general pur-
pose language model estimated from of the data. In
a final experiment, we assigned a random move type to
each utterance. The results are shown in table 2.

grammar % Word
Accuracy

general grammar all data 61.3
data 58.3

move specific 100% detection 62.7
best choice 63.1
automatic 58.5
random 52.5

Table 2. Recognition results

6 DISCUSSION

Our hypothesis was that intonation is a good predictor of
move type and that move specific language models are a
useful constraint for speech recognition.

6.1 Intonation

We can infer from the results in table 2 that intona-
tion does carry useful information, because the automatic
move detection system gave improved results (58.5%)
over the random move type experiment (52.5%) and over
the grammar trained on of the data (58.3%). The
poor performance of the system which assigned random
move types to utterances shows both that the intonation
recogniser is adding useful information, and that the lan-
guage models for the various move types are distinct.
However, the automatic system did not do as well as that
with the grammar trained on all data. We believe this is
mainly due to insufficient data in move specific language
model training.

The HMM approach to intonational tunes outperforms
other approaches we have tried, for instance the neural
net system described in [13]. We have represented into-
nation with continuous tilt parameters in experiments de-
scribed here and hence used continuous density HMMs.
It is worth noting that other intonational representations
can also be modelled by HMMs and specifically a rep-
resentation based on discrete categories of accents could

keeping the distribution of the types the same as in the 100% move
detection case



be modelled by a HMM with discrete observation proba-
bilities.

6.2 Language modelling
It is clear that the move types do form clusters in terms
of language model. This can be seen from table 2; the
100% move type detection result (62.7%) is better than
that for the general purpose grammar (61.3%). Further
language model improvements we intend to examine in-
clude smoothing the grammars using a grammar trained
on all data, or on other corpora, such as the HCRC Map
task [1]. Although the 12 move types used here did ex-
hibit some degree of clustering, we feel that they are
probably not the optimal choice. Merging or splitting
of some move types may give improved results.

6.3 Further Work
As mentioned in 5.2, the results we quote are for a system
where a single language model is chosen on the basis of
the intonational analysis, and speech recognition is gov-
erned by that language model. We expect better results
from an integrated system which computes the proba-
bility of recognition hypotheses according to all mod-
els, weighted according to the intonational probability of
each model for the utterance under consideration.

We will also consider context-dependent intonational
models, as discussed in the Introduction, and higher or-
der N-grams for a priori move probabilities. This can be
done in either in “participant” mode, where for each ut-
terance the system models the other speaker, and hence
knows for certain what type of move has just been made
previously, or “overhearer” mode, where it performs a
Viterbi search for the best move sequence over the entire
conversation. Participant mode can of course be expected
to give better results, consistent with studies such as [11].
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