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ABSTRACT

This paper presents a study on the use of wide-coverage
semantic knowledge for large vocabulary (theoretically
unrestricted) domain-independent speech recognition. A
machine readable dictionary was used to provide the
semantic information about the words and a semantic
model was developed based on the conceptual
association between words as computed directly from the
textual representations of their meanings. The findings of
our research suggest that the model is capable of
capturing phenomena of semantic associativity or
connectivity between words in texts and considerably
reducing the semantic ambiguity in natural language. The
model can cover both short and long-distance semantic
relationships between words and has shown signs of
robustness across various text genres. Experiments with
simulated speech recognition hypotheses indicate that the
model can efficiently be used to reduce the word error
rates when applied to word lattices or N-best sentence
hypotheses.

1. INTRODUCTION

Despite recent achievements in continuous speech
recognition, the correct transcription of large vocabulary
spoken input by computers remains very difficult, if not
impossible, without the proper analysis, modelling and
application of linguistic knowledge in the form of
syntactic or semantic constraints. So far, stochastic
language modelling in the form of N-grams ([1],[6]) has
been the most ’standard’ approach in dramatically
reducing the word error rates of speech recognition
systems. But as current trends move to very-large
vocabulary recognition, enormous amounts of training
texts and sophisticated ’smoothing’ techniques are needed
to overcome the sparse data problem and provide
accurate statistics about N-gram probabilities in natural
language. In addition, the need for more general
language models which can capture both short and long
distance dependencies between the words (something
that N-grams often fail to do) as well as demonstrate
decent performances across a variety of language
domains or genres has become apparent over the last
years.

In this paper, the use of wide-coverage semantic
knowledge for the improvement of performance of
speech recognizers is investigated. Approaches that have

made use of semantic information in the past were
intended for small to medium vocabulary systems and
primarily to assist understanding. Examples of such
approaches include semantic networks ([8]), semantic
grammars ([13]), case frames ([4]), statistically-based
approaches ([10]), unification-based approaches ([13])
and neural networks ([5]).

The work presented in this paper distinguishes itself in
that it uses large-scale semantic information which can
be fully acquired from reusable language resources such
as machine readable dictionaries (MRDs) without the
need for hand-coding or training procedures. In practice,
it would be impossible to develop a model for all
semantic dependencies between all words language in all
probable contexts. Semantic knowledge in MRDs,
however weak or incomplete, can in theory provide
semantic constraints about all words in the language in a
way that is very economical.

2. MEANING REPRESENTATIONS AND
SEMANTIC ASSOCIATIVITY

The meanings of the words in language were acquired
from the Longman Dictionary of Contemporary English
(LDOCE), 1978 edition. The dictionary includes
semantic information about 36,000 distinct root forms
(lemmas) which can cover at least 80,000 words in
English language (when inflected and derived forms are
taken into account1). Three kinds of lexical semantic
knowledge are provided in the dictionary:
• knowledge about the meanings of the words; a word

meaning is represented by a limited set of conceptual
attributes or primitives

• knowledge about the selection restrictions or preferences
certain classes of words (verbs, nouns, and adjectives)
have in language; such restrictions are realised via a
semantic hierarchy of nouns which are classified into 35
categories

• knowledge about the specific discourse or domain a
word can occur; such knowledge is expressed with a set
of subject categories (125 main subject categories and
212 subdivisions)

To utilise the dictionary information for our purposes, all the
individual meanings (sense definitions in the dictionary) of a

                                                
1 This estimation was made with the use of a separate
lemmatisation dictionary compiled from a number of reusable
language resources.



word were merged into a single meaning representation. The
end result was a meaning definition specified by a set of
semantic primitives (including the codes about the
selectional restriction and subject domain information).
Duplicate semantic primitives were eliminated and a list of
36 very common function words (such as "a", "the", "of"
etc.) were excluded from the meaning definition.

2.1 Computation of the Semantic Association

Having transformed the dictionary into a semantic
knowledge base, a simple way to specify semantic
affinities between two words is to find the conceptual
overlap between their meanings as estimated by the
number of semantic bonds or links the meanings have in
common. This is computed with the use of a semantic
association function which is defined as follows:

Let x and y be two words in language whose meanings
are represented by the sets X and Y respectively. The
semantic association between x and y is given by2

S(x,y) = m{X∪Y}/ m{X∩Y} (1)

i.e. the semantic association between the words x and y is
the number of semantic primitives or attributes the
meanings of x and y have in common divided by the total
number of distinct attributes of these two meanings.

When a semantic association function is to operate upon
larger word groupings such as phrases or N-best sentence
hypotheses, the notion of pairwise semantic associations
between words is extended to account for the latent
semantic "activity" of the whole word sequence. The
semantic activity of a word sequence L consisting of
elements L1, L2,.. is defined as
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where S is the semantic association function as defined in
(1) and k is a normalisation factor. A typical value of k is
C2

n =(n-1)n/2 (i.e. the semantic activity of a word string
can be interpreted as the average semantic association
between pairwise word combinations in the string).

2.2 Estimating the Satisfiability and Constraint of
Semantic Associations

Several experiments were conducted to assess the
satisfiability of semantic associations and the constraint
implied by the model. Due to space limitations they will
only very briefly be mentioned here ([3] for more). It was
found that the semantic associations between word

                                                
2 The notation m{ } is used to denote the number of elements
in the expression within m{ }.

combinations in natural language texts (3250 sentences
taken from the British National Corpus - BNC) are
significantly different than those expected when words
are chosen at random from the dictionary at much better
than 0.001 confidence level. The relative reduction in
uncertainty in discriminating between "text" and
"random" word combinations from the values of the
semantic associations was better than 0.25. For a
vocabulary of 80,112 words, the redundancy ([11]) of the
semantic model was found 45.9 and the associated
perplexity 446. Note that these figures were computed
for single word pairs only i.e. when the prediction of a
word depends on the semantic association with the
previous word in the text. In the experiments with speech
recognition hypotheses as described below, the semantic
constraint was considerably stronger due to the fact that
the semantic associations were computed between all
pairwise combinations of words from beginning to end of
the utterance.

2.3 Semantic Associations and Context Distance

One important finding of the experiments was that,
contrary to some linguistic theories or studies that argue
for local meaning relations between words, the semantic
associations as captured by this model extend to much
larger distances than expected and certainly beyond
sentence boundaries. The results of the experiments
suggest that the semantic associativity between two
words is still much higher than average (i.e. expected at
random) at distances larger than 100 words.

3. SEMANTIC ACTIVITY AND SPEECH
RECOGNITION

To test the efficiency of the semantic association model
for speech recognition, a large vocabulary speech
recognition front-end was simulated with the use of
phoneme confusion data from a speech recognizer ([7])
and a pronunciation lexicon 70,646 words. The model
was tested on both N-best sentence hypotheses and word
lattices (graphs) for an input text of 650 sentences
(14491 words) selected from the BNC in 13 sets of 50
sentences, each set from a different BNC genre (written
text: leisure, social science, world affairs, arts,
imaginative, applied science, natural science,
commerce/finance, belief/thought - spoken text: leisure,
educative/informative, public/institutional, business). For
each N-best sentence hypothesis a semantic activity
score was computed and the hypothesis with the best
score was assumed the most likely one.

The results for a total number of 637,176 N-best
sentence hypotheses tested with the model suggest a
considerable reduction of word error rates for a wide
spectrum of recognition rates (fig. 1). Even when the
baseline recognition accuracy without the application of
the model was about 92% words correct, improvements
were observed from 0.6 (for the written leisure text) to



2.9% words correct (for the written belief/thought text).
There was a variation in the recognition performance
from genre to genre but not as much to suggest that the
model is biased towards a particular genre.

Recognition rate before the application of semantics
                      (% words correct)
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Fig. 1: Error reduction and relative error reduction for
different baseline accuracies

3.1 Semantic Activity and Word Recognition

The semantic activity scores for the N-best hypotheses
were correlated with the corresponding recognition
scores. It was found that there exists positive correlation
between semantic activity and word recognition accuracy
at better than 0.01 significance level (Pearson correlation
coefficient=0.33961 for 81 paired observations of
grouped recognition scores). This indicates that the
semantic associativity (as measured by this method) and
the word correctness go hand-in-hand and the model is
capable of consistently discriminating between more and
less accurate hypotheses.

3.2 Error Reduction and Amount of Context

Since the semantic associations between words were
computed from the beginning to the end of the utterance,
it would be logical to assume that the longer the input
utterance, the higher the probability of having
semantically related words in the context and the higher
the semantic activity. It was found that, the more the
context that is taken into account, the larger the error
reduction.

For short utterances (<5 words), there was observed a
decrease in recognition performance on the average,
which was due to the fact that short utterances contain
very few content words so that it was more difficult for
the algorithm to pick up meaning. For longer utterances,
the model performed quite well with the error reductions
ranging from 5 to about 30% and there was a clear
correlation between context width and error reduction

(Pearson correlation coefficient=0.834 for 15 pairs of
grouped observations).

3.3 Inclusion of the Correct Hypothesis within the
Top N%

It would be useful to know the probability of having the
correct sentence hypothesis within the top N%
semantically scored hypotheses. The inclusion rate of the
correct hypothesis is shown in fig. 2.

Top N% percent hypotheses as scored by the system
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Fig. 2: Probability of including the correct hypothesis within
the top N%

As it can be seen from fig. 2, the probability of having
the correct hypothesis within the top 25% is larger than
80%. This indicates that when the set of N-best sentence
hypotheses is not too large, there is a high degree of
confidence that the semantic model would provide the
correct hypothesis within a list of manageable size (the
top N% values for 90% and 95% probability are 42.5%
and 53.2% respectively).

3.4 Semantic Associativity and Lattice Parsing

To test the efficiency of the model for parsing word
lattices or graphs, 650 lattices were produced. The
average number of different paths through the lattices
was estimated to be 1.38×1020. With so many possible
paths, the use of an exhaustive search procedure was out
of the question and two algorithms for more efficient
lattice search were developed. The first algorithm, called
the Meaning-Driven Search Algorithm (MDSA), is based
on the uniform-cost principle ([9]) and performs a kind
of Dynamic Programming lattice search. The MDSA
makes use of the history of recognised words so that the
recognition of the next word in the graph depends on its
semantic associativity with the previously recognised
words (within the same utterance). Although the
algorithm was found capable of increasing the
recognition performance from about 15% to about 40%



on the average, it was found that often the correct path
was lost within the first few stages of the search. When
that happened, it was impossible for the algorithm to
recover from errors later on during parsing. For this
reason, a second algorithm, the Meaning Driven Look
Ahead Search Algorithm (MDLASA) was designed.

Recognition rate (words % correct)
Text sample Baseline MDSA MDLASA

wri_leisure 12.5 36.2 44.2
wri_soc_science 15.6 41.1 60.1
wri_world_affairs 16.3 51.9 60.5
wri_arts 16.8 50.8 61.7
wri_imaginative 16.3 43.9 52.7
wri_app_science 14.3 37.5 49.7
wri_commerce/finan. 14.9 43.4 48.9
wri_theology 14.8 42.9 43.9
spo_business 13.1 41.8 37.5
spo_public/institut. 15.6 38.8 50.6
spo_leisure 15.5 47.4 54.3
spo_educative/infor. 17.6 46.2 62.4
wri_nat_science 14.0 39.7 52.5
ALL 15.3 42.7 53.8
Table 1: Performance of the meaning driven search algorithms

The MDLASA uses a heuristic function to evaluate the
promise of a node with respect to the concepts that may
be encountered next in the graph. During the initial
stages of the search, when the context is short, the
algorithm relies more on the promise rather than the
semantic score for a partial path. In the later stages of the
search, when the largest part of a complete path has been
determined ,the algorithm relies more on the semantic
associations between the already recognised rather than
the promise of the path. The results of the MDLASA
indicate a relative increase of about 26% (from 42.7 to
53.8% words correct) on the average over the MDSA
(see table 1).

4. CONCLUSIONS

We have presented a linguistic model for wide coverage,
very-large vocabulary speech recognition support. The
model is based on lexical semantic knowledge from an
online dictionary and was found capable of capturing
phenomena of semantic associativity between words in
natural language and efficient in reducing the word error
rates in large vocabulary recognition tasks. In summary,
the advantages of the model are:
• very large vocabulary
• it requires no training and it is economical and easy

to implement (the semantic associations between the
words need not be stored - they can be computed in
runtime)

• it can effectively model long-distance semantic
relationships between words; as such it could also be
used as a cache-based model

• no sense disambiguation or language understanding
are needed; only the meaning associations are
essential

• in theory, depending on the particular
implementation, the model could also be used to
provide top-down control of search

It is not one of the intentions of this paper to compare
this model with other more established language models
in the area of large vocabulary speech recognition, such
as N-grams. It is rather the case that due to the distinctive
differences between the two approaches (qualitative vs.
quantitative information, long-distance vs. short-distance
constraints, domain-independence vs. domain-
dependence) one could see them as complementary. For
example, a bigram or trigram language model could be
used to model local constraints between the words and
the semantic association model could provide clues about
more global semantic dependencies.
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