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ABSTRACT

This work proposes the use of hierarchical LMs as an ef-

fective method both for e�ciently dealing with context-

dependent LMs in a dialogue system and for increasing

the robustness of LM estimation and adaptation. Starting

from basic LMs that express elementary semantic units,

concepts, or data-types, sentence level LMs are recursively

built. The resulting LMs may be a combination of gram-

mars, word classes, and statistical LMs. Moreover, these

LMs can be e�ciently compiled into probabilistic recur-

sive transition networks. A speech decoding algorithm di-

rectly exploits the recursive representation and produces

the most probable parse tree matching the speech signal.

The proposed approach has been implemented for a data-

entry task which covers structured data, e.g. numbers,

dates, and proper names, as well as free texts. In this task,

the active LM must continuously change according to the

current status, the active form, and the data entered so

far. Finally, while the hierarchical approach results very

convenient to cope with this task, it also looks very gen-

eral and can give advantages in other applications, e.g.

dictation.

1. INTRODUCTION

This work presents a technique for e�ciently managing

dynamic Language Models (LMs) in dialog or data-entry

applications. When speech is used to input structured

data the speech recognizer has to apply di�erent LMs de-

pending on the semantic type of the entered data. For

instance, dates, numbers, codes, can be modeled with

speci�c grammars, while texts are usually modeled with

n-gram LMs. Moreover, in data-entry applications, the

LM to be applied may not only depend on the data-type

to be dictated but also on some context information and

previously entered data. Especially when large vocabular-

ies are involved, this approach requires the ability of e�-

ciently combining basic LMs, which can be shared in dif-

ferent contexts, to instantiate context speci�c LMs. This

naturally leads to a recursive representation of LMs.

This paper is organized as follows. Section 2 introduces

hierarchical LMs and briey discusses their application to

n-gram models and to dynamic language modeling. Sec-

tion 3 outlines the speech decoder used to search recursive
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networks. Section 4 describes the application of the above

concepts within the SpeeData project, that deals with a

complex data-entry task. Finally, Section 5 gives some

conclusions.

2. HIERARCHICAL LMs

Hierarchical representations of language have been largely

used in ASR and more speci�cally in spoken language

understanding systems. In general, meaning units, i.e.

concepts, are hierarchically de�ned from words, syntac-

tic/semantic word classes, or even other concepts. Search

for the best interpretation is usually performed on some

word-based intermediate structure, e.g. a lattice or an n-

best list, produced by a speech decoder exploiting some

conventional LM. A Probabilistic Finite State Network

(PFSN) with word-labeled arcs is normally employed

which represents all possible ways of concatenating words

[2]. Performing the interpretation stage directly on the

speech signal requires the parsing process to be similar to

a standard HMM decoding algorithm, and the LM repre-

sentation to preserve the hierarchical nature. Both con-

ditions can be met by using a generalization of PFSN,

the so called Probabilistic Recursive Transition Networks

(PRTNs), and by extending the Viterbi algorithm accord-

ingly. The generalization of PFSN to PRTNs is obtained

by allowing arc labels to denote other PFSNs. The ex-

tended Viterbi algorithm is briey described in the next

section.

In this paper, the application of hierarchical LMs is con-

sidered in two di�erent contexts. First, a class of more

powerful n-gram based LMs is introduced that is even

suited for large vocabulary dictation and second, the ap-

plication of hierarchical LMs in interactive spoken lan-

guage applications is discussed.

2.1. Generalized class-based n-grams

An interesting extension to the ordinary class-based n-

gram LMs is provided by allowing classes to represent

either single words, lists of words, grammars, or other

n-gram models. Of course, nothing prevents from hav-

ing several levels of nested n-gram models. Clearly, such

a model can be conveniently represented with a PRTN.

This allows hierarchical LMs to be implemented without

explicitly duplicating each class representation for every

di�erent context in which it occurs.



The LM probability of a word sequence W can be com-

puted by taking into account all possible interpretation

(parse) trees T (W ) of W by means of the LM, i.e.:

Pr(W ) =
X

T (W )

Pr(T (W ))

However, when using a hierarchical LM more information

is contained in the most probable interpretation, than in

the most probable word sequence. The extended Viterbi

algorithm will thus compute:

T
�

= argmax
T

Pr(T;A)

where A is the acoustic observation.

The probability of an interpretation tree can be computed

in a recursive way. T (W ) can be expressed as a parse tree

t0 whose root c0 has m sub-trees t1; : : : ; tm, with roots

c1; : : : ; cm. The underlying idea is to see internal nodes of

the tree as generalized classes and leaves as words. Hence,

the probability of T (W ) is:

Pr(T (W )) = Pr(T = t0 j c0) =
mY

i=1

Pr(ti j ci) Pr(ci j ci�n+1; : : : ; ci�1)

Pr(ti j ci) is computed di�erently according to the nature

of the class ci. If ci is modelled with a word list then ti

has only one leaf w and Pr(ti j ci) = Pr(w j ci). If ci
is modelled with a grammar, then ti is a parse tree and

Pr(ti j ci) is computed by following the grammar rules. If

ci is modelled with an n-gram model, then Pr(ti j ci) can
be computed by recursively applying the above scheme to

the list of successors of ci.

An example will better clarify the above concepts. Let

one consider the following sentence taken from the Wall

Street Journal corpus:

THE STEEPEST FALL WAS AT BANKAMERICA

CORP.'S BANK OF AMERICA A THIRTY PERCENT

DECLINE TO TWENTY EIGHT MILLION DOLLARS

FROM FOURTY MILLION DOLLARS

A possible interpretation by means of a generalized class-

based LM could be the following one:

THE STEEPEST FALL WAS AT COMPANY(

BANKAMERICA CORP.'S BANK OF AMERICA ) A

PERC( NUM2( THIRTHY ) PERCENT ) DECLINE

TO AMOUNT( NUM9( TWENTY EIGHT MILLION

) DOLLARS) FROM AMOUNT( NUM9( FOURTY

MILLION ) DOLLARS )

In the above interpretation, words in italics correspond

to single word classes. The class COMPANY could

be modelled with an ordinary n-gram model, while the

PERC and AMOUNT classes are modelled with spe-

ci�c grammars. Both grammars refer to other grammars,

i.e. NUM9 and NUM2, which indicate numbers of at

most 2 and 9 digits, respectively.

Generalized class-based LMs improve ordinary n-gram

word or class based models in several ways.

With respect to data sparseness, the hierarchical LM

is more robust as many content words or phrases, e.g.

proper names, are mapped into speci�c classes. In fact,

proper names typically have sparse frequency distribu-

tions, and only few contexts are observed.

If PRTNs are employed less space requirements are needed

to represent these LMs. In fact, by introducing general-

ized classes, less n-grams need to be stored and each class

representation is stored once.

The hierarchical LM is better structured and allows eas-

ier adaptation of probabilities and insertion of new terms.

For instance, new names of companies can be added inside

the corresponding class without a�ecting the highest LM

statistics. Moreover, adaptation can be independently

applied to the higher order LM and to each constituent

classes. In this way, as fewer parameters are present in the

higher order LM, a smaller amount of adaptation data is

required. Besides, there are conditions in which it is nat-

ural to adapt a LM just by replacing some class LMs. For

instance, in the SpeeData system the geographical names

strongly depend on the district in which the data-entry is

carried out, while the higher LM statistics are much less

site-dependent.

Apart from the preparation of the single grammars, train-

ing of hierarchical LM can be carried out automatically.

The requirement is to have a tagged corpus for each of

the employed classes. Tagged corpora can be obtained,

for instance, by means of pattern matching techniques.

Moreover, class LMs can be automatically estimated from

external sources, e.g. corpora or specialized thesauri. Sin-

gle LMs can then be trained separately on each corpus

by means of standard n-gram estimation algorithms, and

compiled into speci�c PRTNs.

2.2. Dynamic LMs

Another application �eld of hierarchical LMs are dialogue

based ASR systems. Phone services, information query

systems, data-entry systems all require dynamic LMs that

automatically vary according to the dialogue state. In

general, the linguistic domain of such systems can be con-

veniently structured into a set of domain speci�c concepts.

For instance, a stock market query system usually deals

with concepts like names of stocks, names of stock ex-

changes, percentages, etc. Each concept can be easily

represented with speci�c LMs. During the dialogue, dy-

namic LMs have to be built to model the expected input

language. Hierarchical LMs allow the active LM to be

expressed by just using references to the concept LMs.

This greatly reduces the size of the resulting network so

that it can be e�ciently compiled on-the-y. Section 4

will describe in detail an application of this technique.

3. RECURSIVE SPEECH

DECODER

An e�ective use of the PRTN representation requires a

speech decoder that directly exploits the recursive struc-

ture without needing its explicit expansion into an HMM

based PFSN. This can be achieved by extending the stan-

dard Viterbi algorithm so as to allow recursion in the ex-



pansion of arcs during the network search procedure. A

good description of the frame-synchronous Viterbi search

applied to HMM-based networks can be found in [3]. The

computation of the quantities needed to �nd the optimal

path consists in performing, for every input frame, a dy-

namic programming procedure that expands all active hy-

potheses, i.e. it extends all the paths that lead to a state

with a non-zero probability. This procedure is applied at

two levels, the network-level, in which the probabilities

of network states are considered, and the HMM-level, in

which the internal states of the models are updated. The

expansion of a network arc at time t requires to perform

a step of the Viterbi algorithm inside the corresponding

model. This internal step considers the likelihood of the

origin network state, multiplied by the arc probability, as

a possible score for a path entering the model at time

t. The likelihood of the �nal state of the model at time

t+1 is then taken as one of the possible scores for a path

entering the destination network state at time t+ 1.

If the two levels are kept distinct, the upper level search al-

gorithm, working on the network, does not depend on the

internal structure of the objects associated to the arcs. It

is only relevant that the internal search algorithm is able

to correctly exploit the hypotheses of incoming paths and

to provide an output that consists in an "optimal" ac-

cumulated likelihood. Hence, nothing prevents arcs from

referring to other networks, instead of HMMs. This is pre-

cisely the concept behind the proposed PRTN decoder. In

this algorithm, the expansion of a network arc can be per-

formed either by a call to an HMM-speci�c function, or

by a recursive call to the network-level expansion func-

tion itself, with the same input and output likelihoods.

An analogous extension is needed for the backtracking

procedure, which retrieves the most probable path after

all frames have been processed. The recursive structure

of the backtracking algorithm allows to build a parse tree

of the input signal, since it makes possible to keep track

of the network spanning each speech segment.

4. APPLICATION TO

DATA-ENTRY

4.1. SpeeData Domain

This work is carried out within the SpeeData project [1],

whose objective is the development of a demonstrator for

multi-lingual spoken data-entry. The application domain

is the electronic storage of the Land Register of an Italian

bilingual region, where Italian and German are both of-

�cial languages. The Land Register contains information

about real estates for a total of about 600,000 documents.

The database �elds show a variety of formats:

� numbers: dates, portions, amounts of money, etc.;

� �xed texts: limited lists of expressions;

� proper names: owners, locations, etc.;

� free texts: descriptions of properties, rights, etc.

Dictionaries of the �elds may vary from a few tens to a

few thousands of words.
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Figure 1: Architecture of the SpeeData demonstrator.

The data-entry process involves �lling in several forms

which can be brought up on the screen by uttering key-

words. Each form contains di�erent data-�elds. A form

can be �lled in �eld-by-�eld, by uttering a �eld keyword

followed by the �eld contents. More keywords and data

can be dictated in continuous speech, so that several �elds

can be �lled in with a single utterance. Alternatively, the

user can explicitly select a speci�c �eld by isolately utter-

ing the corresponding keyword. This modality is useful for

correcting previous recognition errors since, in this case, a

�eld-speci�c LM is activated. Each data-entry operations

may have an e�ect on the active LM. In fact, the active

LM is continuously updated on the basis of the current

form, active �eld, and previously �lled-in �elds.

The LM is dynamically modi�ed by generating a new syn-

tactic expression that combines data-type and keyword

speci�c grammars according to rules that take into ac-

count the current state of the interaction. The resulting

regular expression is compiled at run-time into a PRTN.

In Figure 1, an example of a PRTN corresponding to an

active LM is shown. For the sake of simplicity, a form

is considered that contains only two �elds, namely amnt

(short name of amount) and rate, and three editing com-

mands, namely next, previous and clean, that allow to

move to other forms or to clean the current form or a se-

lected �eld. Moreover, probabilities are omitted for reason

of space. It can be noticed that each arc of the network

may carry two labels: one denoting a PRTN (in boldface)

or a word, and one denoting a semantic class. During the

decoding stage, the semantic classes encountered in the

best matching path of the LM are collected and used to

qualify the output strings. The PRTN in the �gure allows

three main paths: a single command keyword, an ordered

sequence of keyword-optional �eld assignments, an order-

free sequence of keyword-mandatory �eld assignments or

selections.
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Figure 2: Data ow of the SpeeData application.

This LM would be di�erent if a �eld was selected or �lled-

in. For instance, if the rate �eld was selected, the active

LM would allow either to �ll-in that �eld or to utter any

isolated keyword.

In the SpeeData domain there are about 40 LMs cor-

responding to di�erent data-types. These LMs are ei-

ther hand-designed grammars, word lists, or statistically

trained LMs. Each data-type LM is compiled o�-line into

a corresponding PRTN.

In Figure 1, the PRTN used to model the rate �eld is

also shown. In fact, the perc (short name of percent-

age) PRTN itself makes use of another PRTN, namely

num2, which models numbers between 1 and 99. Clearly,

a high variety of LMs can be generated and e�ciently rep-

resented with a limited number of pre-compiled PFSNs.

In general, the de�nition of data-type LMs, e.g. texts and

dates, can exploit other data-type LMs, e.g. numbers.

In Figure 2 a portion of the SpeeData architecture is

shown. The diagram shows the components involved in

the generation of the LM, in the speech recognition pro-

cess, and in the post processing of the interpretation parse

tree. The Manager module produces a state dependent

LM, here called active LM, in terms of a regular expres-

sion. This syntactical expression is compiled at run-time

into a PRTN and passed to the speech decoder. This

network can refer to other PRTNs which have been pre-

loaded by the Speech Decoder from a LM repository. The

incoming speech utterance is decoded into a parse tree.

This data structure is then explored by a Post Proces-

sor that transforms it into a sequence of data assignments

and/or keywords. Finally, this list is returned to the Man-

ager that performs the corresponding actions and varies

the dialogue state accordingly. A description of the com-

plete system can be found in [1].

5. CONCLUSION

This work has presented the application of hierarchical

LMs and PRTNs to ASR. A practical use of this tech-

niques to a speech based data-entry system has been de-

scribed. The possible application of the same formalism to

large vocabulary dictation has also been outlined. Work is

under way for evaluating generalized class-based n-gram

LMs on an Italian newspaper dictation task.
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