
A NOVEL TREE-BASED CLUSTERING ALGORITHM
FOR STATISTICAL LANGUAGE MODELING

G. Damnati and J. Simonin
France Telecom CNET DIH/RCP,

2 av. Pierre Marzin, 22307 Lannion Cedex, France.
Tel.(33)2.96.05.13.88 / Fax.(33)2.96.05.35.30

e-mail: damnati@lannion.cnet.fr, simonin@lannion.cnet.fr

ABSTRACT

In this paper, a new method to cluster words into classes
is proposed in order to define a statistical language
model. The purpose of this algorithm is to decrease the
computational cost of the clustering task while not
degrading speech recognition performance. The
algorithm provides a bottom-up hierarchical clustering
using the reciprocal neighbours method. This technique
consists in merging several pairs of classes within a
single iteration. Experiments on a spontaneous speech
corpus are presented. Results are given both in terms of
perplexity and word recognition error rate. We obtain a
large reduction in the number of iterations necessary to
build a classification tree and thus a CPU time reduction
in building the model as well as a reduction in both
perplexity and word error rate.

1. INTRODUCTION

The purpose of statistical language modeling is to
estimate the probability of sequences of words.
According to the bigram approximation, the probability
of such a sequence is the product of probabilities of each
word of the sequence given its predecessor. Those
bigram probabilities are estimated by counting
occurrences over a training corpus. The main drawback
of the relative frequency estimator is that it provides a
null probability for events (e.g. succession of two words)
never occurring in the training corpus. In order to
overcome the sparse data problem, classifying words
offers an alternative to smoothing techniques.
As the probability of a word given its predecessor, in a
class-based language model, depends on its class and on
its predecessor’s class, the reduced number of classes
implies a reduction of the amount of unseen events.
Words that seldom occur in the training corpus are also
better modeled as they can belong to a class which
represents many occurrences.

A possible approach to establish a classification consists
in automatically generating a partition of the
vocabulary. In this case, multiple membership for a
word is not allowed. Then, if g(w) denotes the class of
w, the probability of a word wi given its predecessor wi-1

is computed as follows:
p(wi | wi-1) = p(wi | g(wi)) p(g(wi) | g(wi-1)) (1)

As it is computationally expensive to try every partition
of a vocabulary as soon as its size gets large enough,
greedy clustering algorithms have been proposed [1],
[4].
In [1], Brown presents a bottom-up hierarchical
clustering algorithm that proceeds as follows: initially,
each word is assigned to its own class. Then, pairs of
classes are successively merged, according to a criterion
relying on the average mutual information between
adjacent classes, until all the elements are grouped into
a single cluster. At each iteration, the merged pair of
classes is the one for which the resulting loss in average
mutual information (computed over the training corpus)
is the lowest.
The resulting hierarchical classification can be
visualised through a binary tree, the root of which is the
final single cluster and the leaves of which are the
initial elements to be classified. Such a tree is called a
dendogram [2]. Once the hierarchy is built, one has to
extract a mapping of the words into classes. This is
achieved by cutting the tree at a level given by the
chosen final number of classes.

The criterion value is computed for each pair of classes
and for each iteration. Given that V iterations are
necessary to build the hierarchical classification tree for
a vocabulary of V words, the complexity of the
algorithm (which is mainly related to the updating of
the distance matrix) increases dramatically as the size of
the vocabulary grows. As a consequence, we have
searched for a better trade-off between computational
cost and language model performance by reducing the
computational cost while keeping equivalent
performance.
We then propose to improve this algorithm, in terms of
computational cost on one hand, and in terms of speech
recognition performance on the other hand. The
principle is to reduce the cost of the distance matrix
updatings by merging in a same iteration several pairs
of classes. The next section presents the reciprocal
neighbours algorithm and its application to the mutual
information criterion.

2. THE RECIPROCAL NEIGHBOURS
ALGORITHM

The objective of this section is to propose an alternative
bottom-up hierarchical clustering algorithm relying on
the notion of reciprocal neighbours [3]. This algorithm

allows one to reduce the number of iterations necessary
to build a dendogram. Even if the complexity of each
iteration is increased, the overall computational time is
reduced and this is achieved without degrading
performance.

2.1 Principles of the algorithm

Assume that we are dealing with a clustering task in
which the criterion is a distance measure between two
classes i and j: d(i,j). If G is the current partition of the
initial set, we define for any class i in G:

{ }dd i d i j
j G j i

() min (,)
,

=
∈ ≠

{ }v i j j G j i d i j dd i() ; , ; (,) ()= ∈ ≠ =

Then two classes are reciprocal neighbours if i∈v(j) and
j∈v(i). In other words, a pair of reciprocal neighbours is
a pair of classes which are mutually nearest neighbours.

The clustering algorithm based on reciprocal neighbours
proceeds as follows:
• at a given iteration, all the pairs of reciprocal

neighbours are merged simultaneously1.

As several merges are achieved in a single step, the
main interest of this method is the reduction of the
number of iterations. Although the complexity of each
iteration is higher, the computational cost is also
reduced because the global number of operations for
distance matrix updating decreases.

From a theoretical point of view, the algorithm based on
reciprocal neighbours leads exactly to the same
classification as the basic one, providing that the
distance measure d satisfies the reducibility axiom (also
called the median axiom) [2]. Let {h,h’} denote the
class obtained by merging the two classes h and h’.

Median axiom:
For any elements h, h’, h’’ of a partition G,

if d(h,h’) ≤ min{d(h,h’’) , d(h’,h’’)}
then min{d(h,h’’) , d(h’,h’’)} ≤ d({h,h’},h’’).

In other words, if d is a distance measure satisfying this
axiom. Assuming that (h,h’) and (h’’,h’’’) are two pairs
of reciprocal neighbours for that distance, if we choose
to merge first h and h’ then the new class {h,h’} cannot
be closer to h’’ than h’’’ is. Therefore, h’’ and h’’’
remain reciprocal neighbours after the merging. Hence,
if the median axiom holds for the distance then both
pairs may be merged in the same step leading to an
equivalent result.

1 In the case of three equidistant classes, a pair is chosen while the third
class is left for further iterations.

2.2 Application of the algorithm to the loss of
mutual information metric

Concerning our study, the distance is, as for the Brown
algorithm, the loss of average mutual information. Let
pk(l,m) denote the probability of observing in the
training corpus the succession of two words from class l
and class m, respectively, at iteration k. Let then pk(l)
denote the probability of class l at iteration k.

pk(l) = ∑
m

 pk(l,m) = ∑
m

 pk(m,l) (2)

The average mutual information between adjacent
classes is defined at iteration k as:

Ik = ∑
l,m

 pk(l,m) log
pk(l,m)

 pk(l) pk(m) (3)

The distance between two classes is then the difference
between Ik and the resulting Ik+1 that would be computed
at the next iteration if those two classes were merged.

Given that merging two classes affects the loss of
mutual information value for every other pair of classes,
the median axiom, presented above, is not satisfied. The
reciprocal neighbours clustering algorithm doesn’t
provide exactly the same classification tree as the
previous bottom-up hierarchical one. Consequently, we
have had to adapt the reciprocal neighbours algorithm
to this particular metric.

Actually, it is possible that a merged class at a given
iteration modifies the set of reciprocal neighbours
determined for this same iteration. To be more precise,
if two classes h and h’ are reciprocal neighbours but are
far from each other, it is more likely to observe that a
newly formed class becomes closer to h’ than h is. One
possibility arises then, that is to set a threshold over the
loss of mutual information value.

In order to choose appropriate thresholds, histograms of
the values of the distance between selected reciprocal
neighbours at each iteration have been plotted. From
this observation, different ways of setting a threshold are
proposed.

The first proposal is directly related to the histograms as
the threshold is chosen to depend on both the minimal
and the maximal value of the distance, among selected
reciprocal neighbours.
Let RNi denote the set of all reciprocal neighbours at
iteration i. We define:

dmin
i = min{d(h,h’) ; (h,h’) ∈ RNi}

dmax
i = max{d(h,h’) ; (h,h’) ∈ RNi}

The threshold is computed according to the following
formula, where n denotes a constant coefficient:

Θi = dmin
i +

dmax
i - dmin

i

n (4)

The set of neighbours effectively merged at iteration i is
then:

RNTi = { (h,h’) ∈ RNi / d(h,h’) ≤ Θi }

The second approach is easier to implement but allows
us to study another phenomenon related to the first
merges in the classification process. It consists in
determining the minimal value of the distance for pairs
in RNi (as was done above) and in computing the
threshold as follows:

Ti = τ * dmin
i (5)

where τ is a constant real coefficient.

The problem with this method is that, for the first
merges, the value of dmin

i is very low and often
unsignificant. Multiplying it by a coefficient is
problematic. In order to overcome this problem, we set a
fixed value T0 for the threshold when dmin

i is considered
to be too low (below 10-5 in our experiments).

2.3 Low-occurring words

As we noticed above, bottom-up hierarchical clustering
algorithms based on mutual information suffer from the
fact that the first merges are decided upon using very
low, and sometimes unsignificant, values of the
criterion. A possible way to overcome this drawback is
to treat separately words that seldomly occur in the
training corpus. In fact, the membership of such words
to one or another class has only little impact on the
overall mutual information. It is easy to notice that most
of the first merges concern low-occurring words.

We propose here a simple way to treat those words that
is to cluster them all together into a single class which
remains unchanged during the clustering process. If
MinCount denotes the minimum number of occurrences
for a word to be taken into account in the clustering
task, the classification tree will be built only over those
words occurring more than MinCount times as will be
discussed in the next section.

3. EXPERIMENTAL RESULTS

Experiments are run on a spontaneous speech corpus
composed of transcriptions of human-computer spoken
dialogues on the AGS voice service directory inquiry
demonstrator [5]. The vocabulary contains 858 different
words, 782 of them occurring in the training text. The
training corpus consists of 26362 words (5661
sentences), and the test corpus consists of 4041 words
from 816 sentences.

In order to compute perplexity on the test set for the
different models, probabilities are smoothed according

to a smoothing threshold. Unseen events probabilities
are set to a constant small value ε.

Speech recognition tests are carried out with a HMM-
based, speaker independent, continuous speech
recognition software working over the telephone
network.

First of all, the class-based model constructed with the
Brown algorithm classification is tested and compared
with a word bigram model. A minimum for both
perplexity and word error rate is reached at
approximately 300 classes. At that point, both are below
the corresponding perplexity or word error of the word
bigram model rate (4% reduction for the word error
rate).

Concerning the reciprocal neighbours algorithm, the
classification tree is built in far less iterations. Although
each iteration has a higher complexity, the CPU time
needed to build the tree is lowered. The following table
indicates both number of iterations and CPU time for
different algorithms (notations are defined in the
previous section):

Tab.1: Iterations, CPU time and CPU reduction for
various algorithms.

Number of
iterations

CPU
time
(s)

CPU
reduction

Brown 782 1864
R.N. no threshold 116 1629 13 %
R.N. n = 2 152 1584 15 %
R.N. τ = 5; T0 = 1.5 113 1629 13 %

Brown MinCount = 3 468 468
R.N. MinCount = 3 85 424 9 %

Table 1 indicates a reduction of the number of iterations
by a factor from around 5 to 7, while the CPU time is
reduced by 13% to 15%.

One of the main advantages of the reciprocal neighbours
algorithm is that it provides a classification tree with
different levels, each level corresponding to one
iteration. All the neighbours that are merged in a given
iteration belong to the same level. Level 0 corresponds
to the initialisation of the algorithm where each word
belongs to its own class. The root of the tree, where all
words are gathered into a single class is the highest
level. A mapping can then be extracted from the tree for
every level.
Perplexity as well as word error rate are evaluated on
the test corpus.
The first results compare the Brown algorithm and
reciprocal neighbours algorithm in its original form
(that is without any threshold). Figures 1 and 2 show
that both outperform the word bigram model and the

reciprocal neighbours algorithm gives slightly better
results.

45 iterations

23

24

25

26

27

28

29

0 100 200 300 400 500 600
number of classes

perplexity

word bigram
Brown algorithm
Reciprocal neighbours

Fig. 1: Perplexity for different numbers of classes
word error rate

45 iterations

36

37

38

39

40

41

42

43

44

0 100 200 300 400 500 600

number of classes

word bigram
Brown algorithm
Reciprocal neighbours

Fig. 2: Word error rate for different
numbers of classes

Even though the latter seems to be less precise, it is
possible to explain why it gives better results when
considering the first merges. As we said previously, the
first values of the criterion are often unsignificant and
the choice of one pair of classes to merge rather than
another one is not very reliable. On the contrary, with
the reciprocal neighbours algorithms many merges are
done in the very first iterations. If the average number of
merges per iteration is 5.14, there are 83 merges in the
first iteration and, at the fifth iteration, a total of 166
pairs of classes are merged. Thus, perturbations due to
numerical unaccuracies are reduced.

We now compare different versions of the reciprocal
neighbours algorithm, that is different ways of setting a
threshold over the loss of mutual information values.
Considering the first possibility derived from the
histograms, testing several values for n have shown that
2 was the optimal value. It performs equivalently with a
slight reduction in CPU time.
As for the second possibility, the optimal values have
proven to be τ=5 for the multiplicative coefficient and T0

= 1.5 for the fixed threshold applied to low values of the
minimal distance.
Both lead to equivalent performance as the original
algorithm. This allows to conclude that even if the
median axiom is not satisfied and if the hierarchical
algorithm based on reciprocal neighbours doesn’t
provide the same dendogram as the simple hierarchical
one, it doesn’t affect the performance and actually gives
slightly better results.

The last set of experiments deals with low occurring
words. Several values of the minimum number of
occurrences for a word to be taken into account during
the clustering process (MinCount) have been tested. For
MinCount = 3, the number of clustered words drops
from 782 to 468. The tree is then built in far less time,
as indicated in the table at the beginning of this section.
Here again, the reciprocal neighbours algorithm applied
to words occurring more than MinCount times in the
training corpus is faster than the Brown algorithm and
the results are slightly better with the reciprocal
neighbours algorithm.
It is interesting to note that not classifying the low-
occurring words lead to a 4-fold reduction in
computational cost while keeping performances
equivalent to the case where all the words are clustered.

4. CONCLUSION

A new bottom-up hierarchical clustering algorithm is
presented which enables a large reduction of the number
of iterations necessary to build a classification tree as
well as the corresponding CPU time. The speech
recognition word error rate is also reduced. A possible
interpretation is that the algorithm minimises the effects
of numerical unaccuracy in computing the low values of
the metric during the first merges of the clustering
process. Further tests on larger corpora should help us
in the interpretation.
Another interest of this hierarchical clustering
algorithm is that it provides a tree where each level
corresponds to a specific classification. In future work,
we will investigate extracting an optimal level of
classification for each word of the vocabulary.

REFERENCES

[1] P.F. Brown, V.J. Della Pietra, P.V. deSouza, J.C.
Lai, R.L. Mercer: « Class-Based n-gram Models of
Natural Language ». Computational Linguistics,
18(4), pp. 467-479, 1992.

[2] G. Celeux, E. Diday, G. Govaert, Y. Lechevallier, H.
Ralambondrainy: « Classification automatique des
données », (in French) Dunod informatique, 1989.

[3] C. de Rham: « La classification hiérarchique
ascendante selon la méthode des voisins
réciproques », (in French) Les Cahiers de l'Analyse
des Données, vol. V, 2, pp. 135-144, 1980.

[4] R. Kneser, H. Ney: « Improved clustering techniques
for class-based statistical language modelling », Proc.

 EUROSPEECH’93, Berlin, pp. 973-976, 1993.
 [5] D. Sadek, A. Ferrieux, A. Cozannet, P. Bretier, F.

Panaget, J. Simonin: « Effective Human-Computer
Cooperative Spoken Dialogue: The AGS
Demonstrator », Proc. ICSLP’96, Philadelphia, USA,
1996.

