On the Global F0 Shape Model using a Transition Network
for Japanese Text-to-Speech Systems

Yasushi Ishikawa and Takashi Ebihara

Information Technology R&D Center, MITSUBISHI Electric Corporation
5-1-1 Ofuna, Kamakura, Kanagawa 247, Japan

Phone: +81-467-41-2077 FAX: +81-467-41-2136
{yasushi,ebi} @media.isl.melco.co.jp

Abstract

In this paper, we describe a model of funda-
mental frequency control. In general, a two stage
model which consists of a global model and a lo-
cal model is used as a FO control method for
Japanese text-to-speech systems. We propose a
model which is represented by transition net-
work as a global model that generates parame-
ters of a local pitch model from linguistic pa-
rameters of a sentence. In the proposed model,
syntactic analysis and generation of FO parame-
ters are integrated, and the nodes of a network
represent the linguistic and prosodic state of a
sentence. The parameters of a local model is
generated when taking transition. We also pro-
pose a training method of the network. The pre-
diction results showed our model can predict the
phrasal accent parameters with satisfactory high
accuracy. We also describe the model can be ap-
plied prediction of pause position.

1. INTRODUCTION

A model of fundamental frequency (FO) control is
one of the most important problems for the natural-
ness of synthesized speech in Japanese TTS systems.
In general, a two stage model which consists of a
global model and a local model is used as Japanese
FO control model [1]. A local model is a model that
generates FO contours of an accent phrase. Fujisaki
model [2] is one of the typical models. A global
model generates parameters of a local model from
linguistic features and other factors which are ob-
tained by linguistic processing of an input sentence.

Recently, global models based on FO contour pre-
diction using statistical method are proposed and
good results were reported [1,3,4]. In these studies,
quantitative relation between FO contours and linguis-
tic parameters of an input sentence from large data-
base. Thus, linguistic processing which analyzes syn-

tactical structure or semantic dependency of phrases
quantitatively is required. However it is very difficult
to realize robust linguistic analysis, and even if suc-
cessfully analyzed, it is also difficult to represent lin-
guistic structure of a sentence or contextual features
of phrases with quantitative parameters.

Our goal is to realize a prosodic model which can
represents the relation between linguistic and pro-
sodic features and is based on a robust linguistic
processing. In this paper, a global model that inte-
grates FO parameter generation with linguistic analy-
sis, and training method of the model are proposed.
And we show that a proposed method is also success-
ful for prediction of pause position.

2. NETWORK MODEL FOR GENERATION OF
PROSODIC PARAMETERS

2.1 Network Model

The global model is required to predict parameters
which represent global FO shape with high accuracy.
In Japanese a global model generates FO parameters
from linguistic features such as semantic dependency
of phrases, part of speech, in general. Thus the lin-
guistic processing which extracts such linguistic pa-
rameters is required to analyze any sentences includ-
ing ill-formed sentences robustly. Our basic idea is to
relate linguistic structure with prosodic features di-
rectly without quantification or classification of lin-
guistic features of a sentence.

The proposed global model is represented by tran-
sition network as shown in Figure 1. Each arc is la-
beled with a phrase category, and each node repre-
sents not only syntactical but also prosodic state of a
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Figure 1. The transition network



sentence. Starting at the beginning of the sentence,
each phrase is compared with categories labeled on
the arc tk from the initial state. If the phrase and a
category Cki match, a state shifts to the next node Sm,
and the model generates FO shape parameter ak when
taking transition.

2.2 Training Algorithm

The network model is trained by iterating the split
of a node and the arc in the network [5]. The training
algorithm is shown below.

Step 1. Initial Network

An initial network is created as very simple form.
Figure 2 shows an example of the initial network. In
this network the initial node S1 is assigned beginning

pause

Figure 2. The Initial Network
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Figure3. Arc splitting ( split in the labels )
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of a breath phrase and the final node SN is assigned
end of a breath phrase. All arc is labeled with all
phrase categories. The output FO parameter of an arc
is obtained by averaging FO parameters of all phrases
which pass this arc in the learning data.

Step 2. Detection of the arc with maximum error.
Comparing the output value with learning data, the
arc with maximum prediction error is detected.
Step 3. Splitting
Two kinds of splitting are applied on the arc with
maximum error.
Step 3-A Arec splitting
Classifying categories on the arc into two sets, the
arc is split in order to minimize prediction error. This
splitting in label domain means to learn the difference
of FO shape that is due to a linguistic category of a
phrase ( Figure 3).
Step 3-B Node splitting
Classifying categories of the preceding phrases of
phrases on the selected arc, the preceding node of the
arc is split. This splitting means to learn the differ-
ence of FO shape caused by the phrase context.
Step 4. Select best splitting and retraining
Splitting which minimizes prediction error is se-
lected and output values of modified arcs is obtained
by averaging training data..
Tterating step 2 through 4, the network which can
represent linguistic and prosodic features of sentence
will be obtained.

3. EXPERIMENT

3.1 Experiment Data

The experiment was carried out in order to evalu-
ate the proposed model and training algorithm. In the
experiment 503 phonetically balanced sentences ut-
tered by a male professional announcer are used. A
FO contour generation model based on linear approxi-
mation is adopted as s local pitch generation model.
An accent component parameter shown as a in figure
5 is used as a parameter to be predict. The parame-
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Figure5. The parameter of the local model



ters were detected manually observing pitch pattern.
Training was carried out using learning data of 400
sentence utterances ( 3073 phrases ) , and the model
were evaluated using the remaining 103 sentences (
650 phrases ).

3.2 Linguistic category

We compared several sets of linguistic categories
in previous work, the results of experiments show
that better performance is obtained with the linguis-
tic category based on uses of a part of speech rather
than direct category of a part of speech. Table 1
shows linguistic labels which are used in the experi-
ment. And in this experiment breath group bounda-
ries are given.

3.3 Results

Figure 6 shows prediction errors of learning data
and test data. In this figure the vertical axis shows
prediction error in octave, the horizontal axis shows
the number of splitting. The results that the prediction
errors decrease with a number of training show effi-
ciency of the proposed method.

This model represent only relation between lin-
guistic and intonation features. However it is well
known that there is obvious relation between FO pa-
rameter shown in figure 5 and some other factors.
The length of accent phrase is one of the typical fac-
tors. Thus, we carried out other experiment in which
FO parameters are modified by length of phrase. At
first relation between length and FO parameter was
obtained from learning data using statistical method.
Training and evaluation are carried out with FO pa-
rameters which are modified with obtained coeffi-
cients shown in table 2. The errors are shown in fig-
ure 7.

We also evaluated a conventional statistical
method in which nine control factors and 28 catego-
ries in total are used. The factors include length of
phrase, a phrase boundary type, a part of speech and
semantic dependency of phrases. The classification of
control factors was obtained assuming the ideal lin-
guistic analyzer. The prediction errors by the statisti-
cal method are shown in table 3. The results shows
the accuracy of proposed method is better than the
conventional statistical method.

Table 1. Linguistic categories of a phrase
category

noun + /no/, /eno/ ( pp. possessive case 'K

noun + /wa/, /ga/ ... (pp. nominative, objective )

noun + other

declinable word phrase

declinable word phrase ( 2nd phrase in compound phrase )
others

*pp.: postpositional particle of Japanese

errorfoct]

3.4 Prediction of Pause Position

Since the proposed model represents relation be-
tween linguistic and prosodic features, it can be ap-
plied to prediction of other prosodic parameter. On
the other hand, obvious correlation between prosodic
parameters, such as pause and pitch. Thus it is con-
sidered that the model which trained to represent FO
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Figure 6. Prediction errors

Table 2. Modification coefficients

length 1,2 3 4 5 6
in mora

0.22 | 0.04 |-0.02

coef. (oct)
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Figure 7. Prediction error after modification

Table 3. Prediction error by the statistical method

Data Set prediction error [oct]
closed 0.153
open 0.148




features can represent other prosodic features. We
carried out the experiments that predicts position of
pause in a sentence. In this experiment, an arc of
transition network has probability of pause generation
shown in figure 8. In the figure p denotes the prob-
ability that pause occurs and ( / - p ) is the probabil-
ity that pause does not occur. Since it is difficult to
decide the optimum positions of pause in a sentence
from possible transitions, we adopted simple deci-
sion method that a pause is generated at the transition
with highest probability in first N phrases. The results
are shown in figure 9 and 10. About 75 % of pause
position are correctly predicted in both leamning and
test data set. This results show the efficiency of the
proposed model as a model that represents linguistic
and prosodic features in Japanese.

4. CONCLUSION

In this paper, the model for global FO shape based
on transition network and the training algorithm of
the model were proposed. The proposed model with
linguistic parameters which are considered on the
uses of a part of speech archived high performance.
The accuracy of prediction is higher than the conven-
tional model based on statistical method. And the
model can represent not only fO shapes but also pause
position well. It strongly suggests that natural synthe-
sized speech can be obtained with this model. Our
model also has the following advantages

¢ The model requires small amount of computa-
tion.

¢ The model is a powerful representation for gram-
mars. Any sentences includes ill-formed sen-
tences can be analyzed with this method.

Future work includes the following enhancements:
(1) allowing recursive arcs for more efficient and ac-
curate model; (2) introducing semantic parameters,
(3) evaluation of synthesized speech.
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Figure 8. Network with probabilities p that pause occurs

REFERENCES

[1] M. Abe and H. Sato, "Two-Stage FO Control Model us-
ing Syllable based FO Units," ICASSP’92 pp.II-53 - II-
56, 1992

[2] H. Fujisaki and K. Hirose, "Analysis of voice funda-
mental frequency contours for declarative sentences of
Japanese,"” J. Acoust. Soc. Jpn(E), 5, pp.233-242 1984

[3] Sagisaka,Y. "On the Prediction of Global FO shape for
Japanese Text-to-Speech”, Proc. ICASSP90 pp.235-
328, 1990

[4] Traber C. "FO Generation with a database of Natural FO
Patterns and with a Neural network:, Proc. ESCA
Speech Synthesis Workshop pp.141-144, 1990

[5] Takami,J. and Sagayama,S., "A Successive State Split-
ting Algorithm for Efficient Allophone Modeling",
ICAASP’92, pp.573-576 (1992)

100 . |
Collect —
Insertion —+—
80 Deletion ~o-- 1
— 60 1
°\° Aot
T proreme TR
© =4 kY
40 + ¢ .
20 1
O L L L L

0 20 40 60 80 100 120 140
training

Figure 9. Accuracy of pause prediction ( learning data )
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Figure 10. Accuracy of pause prediction ( test data )



