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ABSTRACT

In this paper, we describe a fast search algorithm for sta-
tistical translation based on dynamic programming (DP)
and present experimental results. The approach is based
on the assumption that the word alignment is monotone
with respect to the word order in both languages. To re-
duce the search e�ort for this approach, we introduce two
methods: an acceleration technique to e�ciently com-
pute the dynamic programming recursion equation and a
beam search strategy as used in speech recognition. The
experimental tests carried out on the Verbmobil corpus
showed that the search space, measured by the number
of translation hypotheses, is reduced by a factor of about
230 without a�ecting the translation performance.

1. INTRODUCTION

In this paper, we address the search problem in statistical
translation and present fast algorithms for the presented
task. To review the statistical translation approach,
we consider a source (`French') string fJ1 = f1:::fj:::fJ,
which is to be translated into a target (`English') string
eI1 = e1:::ei:::eI: Among all possible target strings, we
will choose the one with the highest probability which is
given by the Bayes' decision rule:

ê
I
1 = argmax

eI
1

fPr(eI1jf
J
1 )g

= argmax
eI
1

fPr(eI1) � Pr(f
J
1 je

I
1)g :

Pr(eI1) is the language model of the target language,
whereas Pr(fJ1 je

I
1) is the string translation model. The

argmax operation denotes the search problem. In this pa-
per, we address the search procedure, i.e. an algorithm
to perform the argmax operation in an e�cient way.
The string translation probability Pr(fJ1 je

I
1) de�nes a

correspondence between the words of the target sentence
and the words of the source sentence. In this paper
we assume a dependence where each source word cor-
responds to exactly one target word. Models describing
these types of dependencies are referred to as alignment
models [1, 2, 3, 6]. For the translation model we use a
so-called HMM-based alignment model as described in
[3, 6], where the probability p(aj jaj�1) of aligning the
j-th word in the source sentence to the aj in the target
sentence depends on the previous alignment aj�1 for po-
sition j�1. The problem formulation is similar to that of

2 31 5 64

T
A

R
G

E
T

 P
O

SI
T

IO
N

 

SOURCE POSITION

Figure 1: Illustration of alignments for the monotone

HMM.

the time alignment problem in speech recognition, where
the so-called Hidden Markov models have been success-
fully used for a long time. To train the parameters we
perform a maximum likelihood estimation of the transla-
tion parameters using the EM algorithm[6]. Details are
omitted here due to space limitations.

2. SEARCH ALGORITHM FOR

TRANSLATION

2.1. Baseline DP Algorithm

The system uses two knowledge sources, namely a bi-
gram language model p(eje0), which is given in terms of
the conditional probability of observing word ei given
the predecessor word ei�1, and a HMM-based translation
model. We can use dynamic programming to �nd the tar-
get sentence eI1 with the highest a-posteriori probability
in Bayes' decision rule. The search procedure presented
here is based on the assumption that the word alignment
is monotone with respect to the word order in both lan-
guages [5]. The search problem can be understood as
�nding a path through a network with a uniform trel-
lis structure. When searching the best path through the
trellis, we �nd an alignment for each word position in the
source sentence j with a position in the target sentence
aj and a word eaj at this position. Due to the monotony
of our alignment model and the bigram language model,
we have only �rst-order type dependencies such that the
local probabilities (or costs when using the negative log-



arithms of the probabilities) depend only on the arcs
(or transitions) in the lattice. The local probabilities
or scores for the arcs are computed using the language
and translation model. Each possible index triple (i; j; e)
de�nes a grid point in the lattice. Using this formulation
of the search task, we can now use the method of dy-
namic programming (DP) to �nd the best path through
the lattice, where we use the auxiliary quantity:

Q(i; j; e): probability of the best partial path which
ends in the grid point (i; j; e).

For the used monotone translation model the auxiliary
quantity satis�es the following DP recursion equation:

Q(i; j; e) = p(fjje) �

max
�

fp(iji� �) �max
e0

p�(eje
0) �Q(i� �; j � 1; e0)g;

where p(f je) is the translation probability for the French
word f given the English word e and p(iji��) is the align-
ment probability. The monotony assumption restricts
the alignment probabilities p(ajjaj�1) to the three cases
� = 0; 1; 2:

� � = 0 : This case corresponds to a word repeti-
tion (i.e. a target word with more than one aligned
source word). We have: p �=0 (eje

0) = 1 i� e = e0.

� � = 1 : This case is the regular one. We use the prob-
ability of the bigram language model: p �=1 (eje

0) =
p(eje0).

� � = 2 : (skip transition): This case corresponds to
skipping a word, i.e. there is a word ~e in the target
string with no aligned word in the source string. We
have to carry out the following optimization over the
non-aligned word ~e:

p �=2 (eje
0) = max

~e
[p(ej~e) � p(~eje0)]:

This maximization is done beforehand and the result
is stored in a table.

The DP equation is evaluated recursively to �nd the best
partial path to each gridpoint (i; j; e). The complexity of
the algorithm is J � Imax �E

2, where E is the size of the
target language vocabulary and Imax is the maximum
length of the target sentence considered. We present two
acceleration techniques for the e�cient computation of
the DP equation: accelerated search and beam search.

2.2. Accelerated Search

To �nd the best partial path to each gridpoint (i; j; e),
the arcs in the lattice leading to (i; j; e) are processed in
a speci�c order so that the computation can be stopped
whenever it is sure that no better partial path to (i; j; e)
exists. By carrying out these computations at each grid-
point, it is guaranteed to �nd the best path through the
lattice. Although the complexity of the algorithm is not
guaranteed to be reduced in the worst case, we obtain
signi�cant computational savings in the average case as
will be shown in the experiments.

The details of the algorithm are as follows. For each suc-
cessor word e, we store the best M predecessor words

e
(�)

1 � � � e
(�)

M
in a list of candidates ranked by p�(eje

(�)

i ),
e.g. M = 10. The computation is carried out similarily
for each of the cases � = 1; 2. For � = 0, no optimization
is needed because in this case there is only one prede-
cessor gridpoint. We expect the best score Q(i; j; e) for
the gridpoint (i; j; e) to result from the M predecessor
words and perform the optimization over this restricted
set beforehand. The best score that results from the M
predecessor words is denoted by Q̂(i; j; e). To guaran-
tee the optimality of the score Q̂(i; j; e), we sort the arcs
leading to gridpoint (i; j; e) according to the scores of the
predecessor gridpoints (i � �; j � 1; e0). The probability
of an arc between the two gridpoints is:

C(�;i;j)(e; e
0) = p�(eje

0) � p(fjje) � p(iji� �)

For the words e0 that are not in the candidate list, we
de�ne an upper bound t�;e for p�(eje

0):

t�;e = min
e
(�)

1
���e

(�)

M

p�(eje
(�)

i ):

Further we de�ne:

�C(�;i;j)(e) = t�;e � p(fjje) � p(iji� �):

�C(�;i;j)(e) is an upper bound of C(�;i;j)(e; e
0) for all e0 not

in the candidate list:

C(�;i;j)(e; e
0) � �C(�;i;j)(e):

When processing the arcs leading to (i; j; e) in the order
of the scores Q(i � �; j � 1; e0), there are two computa-
tional steps. When a word e0 is encountered for which
C(�;i;j)(e; e

0) � Q(i � �; j � 1; e0) > Q̂(i; j; e) holds then

Q̂(i; j; e) is updated:

Q̂(i; j; e) := C(�;i;j)(e; e
0) �Q(i� �; j � 1; e0):

In the second step the following condition is tested:

�C(�;i;j)(e) �Q(i� �; j � 1; e0) < Q̂(i; j; e):

If the condition holds the computation is terminated with
Q(i; j; e) = Q̂(i; j; e). Thus the average complexity for
�nding the optimal score at each gridpoint (i; j; e) is re-
duced from J � Imax �E

2 to J � Imax �E � (logE+M + ~E),
where ~E is the average number of processed arcs in the
sorted lists and logE is due to the sorting operation of
the arc probabilities.

2.3. Beam Search

The dynamic programming approach provides an e�cient
technique for performing the above search problem with
the help of a pruning strategy. There is a direct analogy
to the data-driven search organization used in continuous
speech recognition [4]. The DP based translation algo-
rithm proceeds from left to right along the positions j in
the source sentence. The construction of the hypotheses
is guided by the language model, the translation model
and the alignment model. During the translation pro-
cess the search space is dynamically constructed rather
than using a static prede�ned search space. The compu-
tational cost of the algorithm is linearly proportional to
the number of calculated hypotheses and independent of



the size of the overall search space. The size of the local
search space at position j depends on the ambiguity of
the translation task at that position.

For each position j we maintain a list of hypotheses (i; e)
for di�erent positions i and target words e. This set
of hypotheses is the so-called beam. Denoting the best
scored hypothesis for the word position j by:

QBeam(j) := max
(i;e)

Q(i; j; e);

we retain only hypotheses with a score close to the best
hypotheses for the further consideration. Thus we prune
a hypothesis (i; j; e) if:

Q(i; j; e) < fBeam �QBeam(j);

where the number of surviving hypotheses is controlled
by the threshold fBeam.

3. EXPERIMENTAL RESULTS

3.1. Database

The search algorithms proposed in this paper were tested
on the \Verbmobil Task" [7]. The Verbmobil task is
an appointment scheduling task, where two subjects are
each given a calendar and asked to schedule a meeting.
The translations are carried out from German to English.
The original corpus consisted of 16 857 German-English
sentence pairs. We removed all sentence pairs containing
words, that occured only once in the training corpus (so-
called singletons) and obtained a training set of 14210
sentences pairs. This set was splitted into 13737 sen-
tences for training and 473 sentences for testing. From
this test set, 92 test sentences were �ltered out for which
the monotony constraint was more or less satis�ed or
could easily be obtained by simple word reorderings. The
statistics of the corpus are given in Table 1.

For the word reordering we used a simple parser that
reordered the words in the source sentences to get the
German word order closer to the typical English word
order. This was done mainly for the words belonging to
the verb phrase and the German negation word \nicht".
For the reordering, which is not perfect yet, all sentences
had been tagged with parts-of-speech information. The
reordering was performed for both the training and the
test sentences.

The lexicon models were trained with the reordered
source sentences. To improve the lexicon probabili-
ties pT (f je) (T=trained), we used a bilingual German-

Table 1: Training and test conditions for the Verbmobil

task.

German English
Vocabulary 1,889 1,358

Training: Sentences 13 737
Words 140,702 139,903

Test: Sentences 92
Words 652 665

Table 2: Examples of the Verbmobil task: O= original

sentence after reordering, R= reference translation, A=

automatic translation.

O: Wo wollen wir tre�en uns denn ?
R: Where shall we meet ?

A: Where shall we meet then ?

O: Ich sagte schon , ich habe da eine Besprechung.
R: As I said , I have got a meeting then.
A: I said before , I have got a meeting.

O: Das w�urde mir ganz gut passen.
R: That would be �ne with me.
A: That would suit me �ne.

O: Und wann sollen wir das Abendessen danach machen ?
R: And when shall we have the supper afterwards ?

A: And when shall we could have dinner afterwards ?

O: Wir m�u�ten vereinbaren da mehrere Termine jetzt

f�ur November und Dezember dreiundneunzig .
R: We have to arrange several appointments for

November and December nineteen-ninety-three .
A: We should �x that I have several dates now for

November and December nineteen-ninety-three.

English dictionary. For each word e in the English vocab-
ulary, we created a list of German translations f accord-
ing to this dictionary. The lexicon probability pD(f je)
for the dictionary entry (e; f) is de�ned as:

pD(f je) =

(
0 if (e; f) not in lexicon
1

Ne

if (e; f) in lexicon
;

where Ne is the number of German words listed as
translations of the English word e. The created lexi-
con was linearly combined with the lexicon probabilities
pT (f je) (using the interpolation parameter �) to obtain
the smoothed probabilities p(f je):

p(f je) = (1� �) � pD(f je) + � � pT (f je):

For the translation experiments, we used the value � =
0:5.

3.2. Experimental Tests

We used the Levenshtein distance between the automatic
translation and the reference translation as a measure of
the translation errors. Word Error Rates (WER) are
reported at the word level along with the number of in-
sertions (INS) and deletions (DEL). A weak point of the
WER is the fact that word ordering is not taken into ac-
count appropriately. In order to overcome this problem,
we introduce as a new measure the position-independent
word error rate (PER) that is computed at the word level,

Table 3: E�ect of the number M of preselected candi-

dates e0 in the accelerated DP algorithm on the compu-

tation time (Verbmobil task: 92 sentences = 652 words).

M CPU Time[sec] WER[%]

1 652 25.9
3 500 25.9
5 480 25.9

7 539 25.9
10 547 25.9

all: M = 1358 21132 25.9



Table 4: E�ect of the beam threshold on the search e�ort (active overall hypotheses, active words, active positions) and

word error rates (WER,PER) (Verbmobil task: 92 sentences = 652 words).

beam CPU time [sec] average number of active position-independent position-dependent
threshold Hypotheses Words Positions INS/DEL [%] PER[%] INS/DEL [%] WER[%]

0.0 27 1.0 1.0 1.0 4.5/8.5 28.3 11.1/6.9 32.8
1.0 31 1.5 1.2 1.3 3.8/7.7 24.4 10.8/6.8 29.8
2.5 46 3.1 2.0 2.1 4.9/5.4 23.5 7.7/7.2 26.8

5.0 91 11.1 6.2 3.5 6.6/5.0 23.2 7.1/8.6 25.9
7.5 211 40.2 20.8 4.7 6.6/4.5 23.2 6.6/8.7 25.9
10.0 530 126.8 57.7 5.7 6.6/4.5 23.2 6.6/8.7 25.9

too. We do not take into account the word order but
count only the number of times identical words occur in
both sentences. Words that do not match are counted as
substitutions. Depending on whether the translated sen-
tence is longer or shorter than the reference translation,
the rest of the words are either insertions or deletions.
The PER is guarenteed to be less than or equal to the
WER. Admittedly, these two error criteria are not per-
fect measures. But they can be automatically computed
and are easy to use.

Both accelerating techniques were tested using the test
settings as described above. The language model per-
plexity of the bigram language model used was 17:3. For
the 92 test sentences, we obtained a WER of 25:9%.
This WER was obtained using the accelerated search that
guarentees to �nd the best path through the translation
lattice.

Table 2 shows translation examples. The German sen-
tences are given after reordering. For many sentences
we obtain acceptable translations altough the word error
rate is high. The e�ect of the number of candidates M

on the computation time (SGI workstation Indy R4000)
is shown in Table 3. The minimum CPU time is obtained
for M = 5.

Table 4 shows the results of the translation experiments
for the beam search DP approach. The search space is
given as a function of the beam threshold fbeam, where
the negative logarithm of the value fbeam is reported.
The search space is given in terms of the average num-
ber of active overall hypotheses, active words and active
positions. The WER varies between 32.8% and 25.9%.
The reason is that the beam search approach can produce
search errors that result in additional translation errors.

4. CONCLUSION

In this paper we presented fast search algorithms based
on dynamic programming for statistical translation. The
approach is based on the assumption that the word align-
ment is monotone with respect to the word order in both
languages. The presented beam search technique resulted
in a reduction of the search space by a factor of about 230
without loss in translation performance. For the Verb-
mobil task, a sentence is translated within a few sec-
onds. Future plans involve the combination of acceler-
ated search and beam search as well as the incorporation

of a trigram language model.
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