
WHAT'S IN A WORD GRAPH
EVALUATION AND ENHANCEMENT OF WORD LATTICES

Jan W. Amtrup Henrik Heine Uwe Jost

University of Hamburg, Computer Science Department,
Vogt-Kölln-Str. 30, D-22527 Hamburg, Germany

email: amtrup|heine|jost @informatik.uni-hamburg.de

ABSTRACT

During the last few years, word graphs have been gain-
ing increasing interest within the speech community as
the primary interface between speech recognizers and lan-
guage processing modules. Both development and evalu-
ation of graph-producing speech decoders require gener-
ally accepted measures of word graph quality. While the
notion of recognition accuracy can easily be extended to
word graphs, a meaningful measure of word graph size
has not yet surfaced.

We argue, that the number of derivation steps a theo-
retical parser would need to process all unique sub-paths
in a graph could provide a measure that is both application
oriented enough to be meaningful and general enough to
allow a useful comparison of word recognizers across dif-
ferent applications.

1. INTRODUCTION

The success of language processing modules within a speech
understanding (or interpreting) system depends heavily on
the quality of the outcome of the first stage in processing,
the speech recognizer. A commonly used interface be-
tween a word recognizer and subsequent language under-
standing modules consists of a chain of words represent-
ing the sequence of words best matching the acoustic input
signal (best chain recognition). If the word recognizer is
to be used as an add-on to already existing language pro-
cessing systems, this interface is the most obvious choice
since the recognition results have the same form as written
input (except for punctuation and capitalization).

When the recognition rate of a speech recognizer is
sufficiently high, the information provided by the best chain
may suffice for the language processing modules. In many
cases, however, these modules either require perfect input
or the average number of errors in the best chain is simply
to high. In these cases, the recognizer has to pass more
information to subsequent processing steps. The simplest
way to do this is to present a list of different word se-
quences, which represent the n-best chains the recognizer

This research was partly funded by the Federal Ministry of Educa-
tion, Science, Research and Technology (BMBF) in the framework of
the VERBMOBIL Project under Grant 01 IV 101 A/O.

was able to detect. Language processing modules may
thus choose among the set of possible utterances presented
by the recognizer.

However, it is usually not enough to deliver just the
best 10 or 20 utterances, at least not for reasonable sized
applications given todays speech recognition technology.
To significantly increase overall system performance,
(the number of utterance hypotheses) has to be quite large.
It increases exponentially with the length of the sentence
[6].

Word graphs offer a simple and efficient way to repre-
sent an extremely high number of competing hypotheses
and have therefore become very popular as the primary
interface between speech recognizers and language pro-
cessing modules [6], [2].

In order to improve speech recognition systems, a reli-
able measure of system performance is needed. Most well
known evaluations (e.g. Resource Management, Wall-
Street Journal, Switchboard) only consider the best chain.
It is often assumed that the best system with respect to
the best chain will also be the best system to produce
word graphs. It is not clear, however, why this assumption
should always hold. The evaluation results of the 1996
Verbmobil acoustic evaluation [8], for instance, give rea-
son to question this assertion. Figure 1 presents the main
results of the evaluation by plotting word accuracy as a
function of word graph density (measured as number of
hypotheses per reference word) for all participating sites.
The leftmost points in all plots represent the best chain
results. Consider the plots labeled “FP1” and “DB”, re-
spectively. While “DB” has a significant advantage in the
best chain class, there seems to be no difference when it
comes to big word graphs.

Previous attempts to directly evaluate word graphs have
been hampered by the lack of a meaningful measure of
word graph quality [4]. While the notion of word accu-
racy can easily be extended to the best-fitting path through
a word graph, it is much harder to find a meaningful mea-
sure of word graph size. In the following sections, vari-
ous measures of the size and quality of word graphs are
discussed and an application–oriented measure of word
graph complexity is proposed.

0 5 10 15 20 25

density

65

70

75

80

85

90

95

100

ac
cu

ra
cy

DB

FP1

FP2

TUM1

TUM2

UHH

UKA

UKA1

Figure 1: Results of the 1996 Verbmobil acoustic evalua-
tion (cat. t1)

2. CONVENTIONAL GRAPH EVALUATION
METHODS

A word graph is a directed, acyclic, weighted, labeled
graph with distinct root and end vertices. It is a quadru-
ple , where denotes
the set of vertices,

the set of edges representing word hypotheses,
a set of edge weights and

a set of labels (usually words).
If graphs are evaluated at all (e.g. [7], [8], [6], [9]),

the quality measure used is commonly a straightforward
extension of the word accuracy measure as used for the
best hypothesis:

word accuracy
#errors

#words in transcription

#errors #substitutions #deletions #insertions

The word accuracy of the graph is then just the word
accuracy of the path through the graph with the best rating
according to this measure.

The size (or density) of the graph is usually defined
as the average number of edges per (transcribed) word
(e.g. [2], [10]). This measure is rather vague, as figure
2 demonstrates. Even without any formal definition of
graph size or complexity, it seems intuitively clear that the
lower graph is somehow “bigger”. However, both graphs
have the same number of edges.

To account for this, the average number of incoming
or outgoing edges per vertex is sometimes taken into ac-
count [8]. Alternative measures proposed in [4] include
the number of paths through a graph, a combination of
the number of edges and the average number of outgoing
edges or error rates for randomly selected paths.

Figure 2: Example graphs

3. APPLICATION-ORIENTED EVALUATION

According to [3], “To evaluate is to determine what some-
thing is worth to somebody.” In order to define a mean-
ingful measure of word graph quality or complexity, one
has to determine first, who is “somebody”, i.e. what kind
of language processing module is the typical customer of
graph producing word recognizers. In this paper, we
assume that a parser is the primary module using word
graphs for further analysis. In particular, we assume that
it uses a formalism based on complex features. This pre-
vents the use of algorithms with a cubic time complexity,
as we may assign different structures to each two edges
or constituents covered by a rule of the syntax (e.g. by
defining a feature that holds the sequence of word labels
attached to the words the edge spans). We constrain our-
selves to grammars that use a context-free backbone for
convenience, and further constrain the rules to have at
most two right-hand side nonterminals, i.e. the grammars
are in Chomsky normal form. We do not, however, apply
constraints regarding search strategy or pruning mecha-
nisms.

These assumptions have serious consequences for pars-
ing complexity, as we cannot hold a fixed size set of non-
terminal categories for each interval of graph vertices (which
leads to polynomial complexity). Instead, we have to pro-
duce one derivation step for each pair of edges (word hy-
potheses or complex edges covering more than one word)
to simulate the processing of a parser.1

A first attempt to establish a measure for word graph
size relevant for the overall performance of a speech un-
derstanding system is to investigate into the number of
paths in a graph. This measure is motivated by the fact
that a parser may construct an analysis for each sequence
of word hypotheses covering the whole utterance. A word
graph may have as many as paths in it, if the
edges are distributed evenly among the graph. Determin-
ing the number of paths in a graph can be done efficiently
in time given the acyclicity of word graphs.

1Since a grammar may contain ambiguities, there may be more than
one derivation step for each pair of edges. We abstract from this fact
as well as from the fact that not every pair of edges may be combined
due to grammar restrictions. Thus, we do only take into account the
consequences obtainable from the raw input, the word graph, and set
aside properties of grammars and such.

The next possible extension is to reduce the graph to
only contain unique word sequences. The motivation be-
hind this modification of a graph is the observation that
two identically labeled yet different paths through the graph
can only differ regarding two pieces of information:

The vertices the paths visit. This should not bother
a parser, since the mapping from words to exact in-
tervals in time may be irrelevant.2

The acoustic scores the words are annotated with.
In this case, only the path with the highest (best)
score needs to be retained.

[1] for each vertex in topological order, do
[2] for each pair of identically labeled

edges , do
Perform merging and create new vertex

[3] Create a new vertex having
,

inserting into the topological order
Copy all edges incident from to

[4] for each edge do
[5] Create a new edge

Copy all edges incident from to
[6] for each edge do
[7] Create a new edge

Delete ,

Figure 3: Reducing a graph to unique label sequences

Figure 3 shows the algorithm to reduce a word graph
to contain unique label sequences only. It guarantees that
no vertex is ever left by two edges with identical labels.
This local condition has the effect that from a global point
of view no two distinct paths through the graph bear iden-
tical word sequences. Unfortunately, it has a time com-
plexity which is exponential in the number of vertices in
the worst case. We introduced several optimizations (mostly
concerning merging of vertices under certain conditions)
which allowed us to apply this algorithm to preproduced
graphs for evaluation purposes.

Just counting (unique) paths, however, ignores the form
of a graph; the proportion of shared sub-paths (that need
to be analyzed only once) is not taken into consideration.
We therefore propose to define the complexity measure of
a word graph as the number of derivations a (theoretical)
parser would have to carry out in order to fully parse the
graph. We first consider the analysis of one path and sub-
sequently extend our argument to derivations over a full
graph.

The number of derivation steps () for a full analy-
sis of one path () through the graph is

(1)

2Note that this is not the case if information other than the words
given by a speech recognizer is to be taken into account, e.g. prosodic
information which may well be bound to specific time intervals.

where denotes the length of the path, i.e. the number
of edges covered by it. The number of derivation steps
directly corresponds to the number of processing steps
needed to fill the derivation matrix of the CKY-algorithm
(cf. [5, p. 107]). Note again that (1) does not entail that
parsing with complex feature based grammars is cubic.
The only property extending over context-free parsing we
use in our argument (namely not to guarantee a fix-sized
set of hypotheses at any vertex) prevents us from incorpo-
rating many paths into one operation.

If we assume that all paths through the graph are in-
dependent of each other, the total number of derivations
is

(2)

which gives a linear dependency between the number of
paths and the number of derivations in a graph. How-
ever, subparts of a graph are shared among different paths.
Thus, the formula above is only an upper bound. To ac-
count for subgraph sharing, we have to use a slightly more
complex algorithm, given in figure 4 below.

[1] totalderiv
[2] for each vertex in topological order, do

Adjust the number of rule applications
and the total number of derivations so far.

[3] deriv
[4] for all do
[5] for each edge do
[6] deriv deriv deriv
[7] totalderiv totalderiv deriv
[8] return totalderiv

Figure 4: Determining the number of derivations in a word
graph

The complexity of this algorithm yields . The
method used to compute the number of derivation assumes
some kind of chart parser which does not compute partial
analyses twice. Shared left contexts are preserved, thus
only adding once to the overall sum.

By using the number of derivations generated by this
algorithm we take into account the impact of different
graph shapes onto parsing effort. Thus, given two graphs
with identical number of paths, the graph that has the largest
amount of subgraph sharing in it will be the best one to
parse. An example of an evaluation based on the number
of derivation steps is shown in figure 5. It is instructive
to compare it with figure 1. In figure 5, the distance be-
tween the two plots for “DB” and “UHH” seems much
bigger than in figure 1 and it seems to increase with the
size of the graphs. In figure 5 the word graphs delivered
by “DB” appear much smaller compared to “HH” and if
one imagines an interpolated plot connecting the points,
the difference between the two plots appears much more
constant.

0 5 10 15 20 25 30 35 40 45 50 55 60

number of derivation steps

75

80

85

90

95

100

ac
cu

ra
cy DB

UHH

Figure 5: Recognition accuracy vs. number of derivation
steps (in) (cat. t1)

4. CONCLUSION

In this paper, we have proposed a new measure for the
problem size represented by word graphs. Starting from
conventional evaluation of best-chain recognizers, we ar-
gued that a straightforward generalization of well known
procedures to graph recognizers may be misleading. While
word accuracy can be extended to graph evaluation, a sen-
sible notion of the size of a graph is much harder to find.
Measures taken until now, like the number of word hy-
potheses per reference word or the average fan out of ver-
tices, are insufficient in our view, since the topology and
shape of the word graphs are not properly reflected by
these measures.

Instead, we propose to choose the amount of process-
ing a hypothetical parser would have to carry out in order
to process a graph as the principal measure for graph size.
This measure takes into account the number of edges as
well as the number of paths, and simultaneously the shape
of a word graph is considered. We motivated this measure
and gave efficient algorithms to compute it.

Further details considering the algorithms presented
can be found in [1].

5. REFERENCES

[1] Jan W. Amtrup, Henrik Heine, and Uwe Jost. What' s
in a Word Graph — Evaluation and Enhancement
of Word Lattices. Verbmobil Report 186, Univ. of
Hamburg, December 1996.

[2] Xavier Aubert and Hermann Ney. Large Vocab-
ulary Continuous Speech Recognition Using Word
Graphs. In ICASSP 95, 1995.

[3] EAGLES. Evaluation of Natural Language Process-
ing Systems. Technical Report EAG-EWG-PR.2,
EAGLES Secretariat, Pisa, 1995.

[4] Michael Lehning. Evaluierung von signalna-
hen Spracherkennungssystemen fuer deutsche Spon-
tansprache. Verbmobil Report 161, TU Braun-
schweig, 1996.

[5] Otto Mayer. Syntaxanalyse. Number 27 in Reihe
Informatik. Bibliographisches Institut, Mannheim,
1986.

[6] Martin Oerder and Hermann Ney. Word Graphs:
An Efficient Interface Between Continuous-Speech
Recognition and Language Understanding. In
ICASSP93, 1993.

[7] Erwin Paulus and Michael Lehning. Die
Evaluierung von Spracherkennungssystemen in
Deutschland. Verbmobil Report 70, TU Braun-
schweig, 1995.

[8] Joerg Reinecke. Evaluierung der signalnahen
Spracherkennung. Verbmobil Memo 113, TU
Braunschweig, Nov. 1996.

[9] B.H. Tran, F. Seide, and V. Steinbiss. A Word Graph
Based n-best Search in Continuous Speech Recogni-
tion. In ICSLP, 1996.

[10] P.C. Woodland, C.J. Leggetter, J.J. Odell,
V. Valtchev, and S.J. Young. The 1994 HTK
Large Vocabulary Speech Recognition System. In
ICASSP95, 1995.

