
PARSING STRATEGY

FOR SPOKEN LANGUAGE INTERFACES

WITH A LEXICALIZED TREE GRAMMAR

Ariane Halber
�
and David Roussel

y

Thomson-CSF

Corporate Research Laboratory

F-91404 Orsay Cedex, France

E-mail: fariane, rousselg@thomson-lcr.fr

Abstract

Our work addresses the integration of speech recog-

nition and natural language processing for spoken di-

alogue systems.

To deal with recognition errors, we investigate two

repairing strategies integrated in a parsing based on

a Lexicalized Tree Grammar. The �rst strategy takes

its root in the recognition hypothesis, the other in the

linguistic expectations.

We expose a formal framework to express the gram-

mar, to describe the repairing strategies and to fore-

see further strategies.

1. Introduction

The coupling of speech recognition (ASR) and natu-

ral language processing (NLP) grows an unavoidable

part of spoken dialogue systems. On the one hand,

ASR modules can bene�t from linguistic information,

([1] among others). On the other hand, the NLP

modules can bene�t from an extended output from

the recognizer {since a single best hypothesis may

not be accurate. To uncover the correct utterance

from the recognition output, [2] and [3] parse the N-

best hypotheses, [4] parses a word graph. We propose

a compromize between exhaustivity and heavy com-

putation with an integrated approach that anchors

the parsing in the best hypothesis and calls needed

repairing taking advantage of the concurrent recogni-

tion hypothesis.

In order to repair an ill-recognized sentence, a

parser should present selective capacities on the con-

current acoustic hypotheses. We have based our work

on a repairing strategy which exploits the comple-

mentarity between the information taken from N-best

hypotheses and the predictive power of a lexicalized

tree grammar.1 In this paper, we �rst present the

principles of the Lexicalized Tree Furcating Gram-

mar (LTFG) which leads our parsing strategy. Sec-

ond, we expose a granular formalization. Then, the

repairing strategies are described autonomously in

� with Dept. Signal, ENST Paris
y with Lab. CLIPS IMAG, Grenoble
1In [5], we present examples of the two repairing strategies,

and how to inform the parsing process with lexical information

from the N-best hypotheses.

this framework. Finally, three symbolic/stochastic

hybrid strategies relying on the same framework are

reviewed.

2. LTFG basic principles

LTFG, like LTAG (Lexicalized Tree Adjoining Gram-

mar), belongs to the family of Lexicalized Tree Gram-

mar. It captures word dependencies thanks to a set

of syntactic structures {called elementary trees{ de-

�ned in its lexicon and factors recursion thanks to a

subset of trees {called auxiliary trees{ that can come

and insert into any host tree structure. \Lexicalized"

means that every elementary tree presents at least one

lexical anchor on its frontier. In LTFG, trees can be

combined through substitution and furcation. The

substitution operation places a tree at an expected

syntactic position. The furcation operation puts an

auxiliary tree inside a host tree. As compared to TAG

adjunction, it is a simpli�cation: it does not introduce

systematically a governing level between the auxiliary

tree and the host node, furthermore the auxiliary tree

frontier falls all on one side of the host subtree2.

Figure 1 displays the result of several auxiliary tree

furcations on a single node. The semantic structure

displayed �gure 1 is built synchronously to the pars-

ing. This semantic representation serves as a sub-

strate for higher level processings. Each syntactic

operation activate a speci�c rule to assemble the tar-

get node features with the source node features. To

eliminate early wrong syntactic analyzis, the nodes

features are checked to be compatible for any syn-

tactic operation [8]. It allows namely to reject spu-

rious successive furcations on a single node, however

distant. The node features are updated through the

assembling process so that compatibility between all

auxiliary trees is ensured while building the semantic

representation.

2Furcation borrows from [6] furcation operation. Assuming

furcation, the synchronous insertion of elements on either side

of a node cannot be captured while this phenomenon is cap-

tured in TAG through so-called \wrapping" auxiliary trees [7].

This grants TAG an extended context sensitivity which allows

it to express a language fanbmcndmg, while TFG can only

express fanbmcndpg. At the cost of this little loss in context

sensitivity, TFG gains an o(n3) parsing instead of o(n6) [7].



Elementary trees and furcation movement:

Derived tree:

Figure 1: Example of furcation. A star symbol on the

right of a dominating node indicates an auxiliary tree

that will anchor (on its right) on a compatible node.

3. Formalization

TFG can be formalized in a granular way in Linear

Indexed Grammar (LIG) formalism as far as syntac-

tic operations are concerned. This is a means to both

compare formally TFG with di�erent grammars and

to host di�erent parsing strategies. Moreover, the

LIG compilation is appropriate to bear a stochastic

version of the grammar. Finally having a uni�ed rep-

resentation for regular parsing and stochastic parsing

will be helpful to design collaboration schemes be-

tween the two in a modular and capitalizing way.

We adapt the LIG compilation proposed by [9] for

TAG. The aim is to compile a tree grammar into a

grammar based on rewriting string of non terminal

and terminal symbols3. It comes down to individ-

ualizing every node of every elementary tree and to

describing transformation rules, which follow a path

from node to node. Actually, each node is split into

a top and a bottom node. The nodes can be rewrit-

ten according to �ve types of rules gathered below.

[10] shows how to obtain a stochastic version of Tree

Grammar based on its LIG compilation, it consists in

granting a probability p to each rule, with p = 1 for

rules which express a simple path in an elementary

tree (here type (1) rules).

Types 1-2: Simple path in the tree {moving from

a node � to its dominated nodes �1:::�n

b[�]! t[�1]t[�2]:::t[�n] (1)

In the right member of the equation, there might be

lexical anchors together with the t[�i] (then the rule is

called \terminal"). The above domination equation

applies after the moving from the top to the bottom

3It should be noted that contrarily to TAG compilation,

TFG compilation doesn't use any stack propagation in the

transformation rules. This is due to its restriction in auxil-

iary trees types assuming furcation.

of a node, which acts as a no{more{furcation rule

since furcation only applies on t[�]:

t[�]! b[�] (2)

Types 3-4: Furcation {moving from a node � that

receives a furcation to the auxiliary tree root node �r.

For a right-auxiliary tree:

t[�]!t[�r]t[�] (3)

For a left-auxiliary tree:

t[�]!t[�]t[�r] (4)

The subtrees dominated by the two nodes are ran

over to their frontiers, the frontiers �t into place,

given de�nition of rules (3) and (4).

The furcation rules can be seen as type (1) domina-

tion rules above the host node and the auxiliary root

node. Here successive furcation on a single node is al-

lowed; the disallowing of further furcation on �, after

the furcation of a given auxiliary tree for instance, is

realized by alternate rules:

t[�]!t[�r]b[�] (3bis)

t[�]!b[�]t[�r] (4bis)

Type (5): Substitution {moving from a substitu-

tion site � to the substituted root node �r:

t[�]! t[�r] (5)

4. Repairing Strategies

The contribution of LTFG for recognition errors re-

pairing stems from two properties : validation and

prediction. Validation enables a bottom{up repair-

ing strategy, while prediction enables a top{down re-

pairing strategy. The repairing articulates around a

bottom{up parsing. The parsing process decomposes

into a lexical analyzis phase which generates possibly

concurrent sequences of trees, and a parsing phase

which processes the given sequence of trees in parallel

branches of parsing. From LIG point of view the lex-

ical analyzis works as an activating of terminal rules

according to each lexical instance w:

b[�]! t[�1]::w::t[�n] (1a)

Besides, when a rule is activated its left member node

� is made to refer to the tree � to which it belongs,

then triggering each node \left rules", i.e. rules in

which the considered node is the left member.

�
refers

! �
triggers

! Rl (�) (6)

Rl (�) =
[

�i2�

(pos�i [�i]! pos�k [�k]::pos�l [�l]) (7)

where pos�i 2 ft; bg. Let R0 be the whole set of left

rules triggered:

R0 =
[

i2[1::m]

Rl (�i) (8)

The search space R used by the parsing is a subset

of R. Are being considered only rules which allow at



least one step of parsing, in the sense that all right

member nodes match at least one left rule compat-

ible with the trees order. This assures in particular

that only nodes from referred trees are involved. It is

noted:
R = �R0 (9)

The repairing strategies consist in modifying the

search space R.

The bottom{up repairing puts new elementary

trees into the lexical analyzis back{end according to

new lexical candidates. The lexical candidates are

taken from the recognizer output, they are selected

either from acoustic observation [5] or from linguis-

tic prediction on word dependencies (LTFG lexicon

predicts namely missing anchors for multi{anchored

trees). The concurrent recognition candidates are fac-

tored under one or several \over-speci�ed" joker trees.

The latter are created on-line to share the syntactic

tree structure of their subsumed instances, and to

cumulate a factorization of their semantic features.

From LIG point of view, a joker sees its nodes inherit

the rewriting rules involving corresponding nodes of

subsumed instances, at the only di�erence, for the

terminal rule, that an interrogation mark stands for

the lexical anchor:

b[�]! t[�1]::t[�i] ? t[�i+2]::t[�n] (1a)

The terminal rule (1a) is incorporated in the lexical

analyzis result, the search space is triggered according

to equations (6) to (9).

The top{down repairing infers from the state of

parsing when failing, whether an under-speci�ed ele-

mentary tree can be inserted in order to resume the

combining process. Those special elementary trees

are either de�ned in the lexicon or generated on-line,

they present minimal semantic information. From

LIG point of view, rules with nodes from the joker

tree are introduced to push the rule reduction further,

they induce a new search space R0, derived from the

cumulation of left rules sets.

R0

0 = R0[R
0

l
(8bis)

R0 = �R0

0 (9)

5. Evaluation

We have tested the parsing strategy on errors pro-

duced by two existing ASR systems from SRI and

Cambridge University. The former, Nuance Commu-

nication recognizer system is constrained by a Con-

text Free Grammar. Linguistic anomalies detection

(ie: the top-down strategy) is normally needless. The

second system, Abbot, uses an n-gram model (backed

o� trigram model)4. The application domain is taken

from the COVEN project [11]

4The training corpus for the trigram was generated arti�-

cially by the context free grammar of the �rst recognizer men-

tioned. 15% of the testset is slightly out of the Nuance CFG.
4The joker tree inserted by the top-down repairing gener-

alizes a large number of elementary trees in the lexicon. The

N-best hypotheses intersect at most a small subset or none.

% % average nb of hyps

PARSING rel- irrel- with ! wholly

USED evant evant joker lexicalized

NUANCE recognition output

standard 32 % 17 % 1.02 ! 1.02

bottom{up

repairing 47 % 4 % 1.15 ! 3.68

ABBOT recognition output

standard 62 % 6.5 % 1.02 ! 1.02

bottom{up

repairing 14 % 6.5% 1.02 ! 2.25

top{down 36 (lexicon)4

repairing 11% 0% 1 ! 2.1 (N-best)

Table 1: results of repairing strategy

The parser has been tested on a 200 words ap-

plication keeping at most seven N-best hypotheses

from the recognition output. The robust parsing runs

in real time on an SGI Indigo-2 Impact (R4400 250

MHZ). First results on the repairing capacities are

presented in table 1.

The top-down repairing is always used relevantly

with our experiment data, but higher level have gen-

erally to consider the di�erent instances that are

generalized by underspeci�ed jokers {introduced by

this pass. To be exhaustive, the hypotheses num-

ber amounts to 36 in average, so that some sorting is

needed.

The bottom-up repairing relevance relies on the

available acoustic candidates. When the right word

is present in none of the N-best hypotheses, the pars-

ing may produce irrelevant analyzis. Increasing dra-

matically the number of N-best, to make sure to get

the right word among them, would go along with an

increase of parsing computation, and possibly an in-

crease of produced analysis hypotheses. The dialogue

module cannot a�ord to handle too many concurrent

analyzis, even if they are factored into an overspec-

i�ed joker. The dialogue runs the risk of confusing

the user with irrelevant interactions. Here again an

improved sorting of lexicalized hypotheses would be

desirable.

6. Toward Hybrid Strategies

Our experiment, as well as other experiments like [12],

suggests to cross-check the parsing strategy with

other knowledge sources, like statistical cues derived

from text corpora or from recognition errors corpora.

An algorithm to build a stochastic LTAG (SLTAG)

is proposed by [10] based on a LIG compilation sim-

ilar to that proposed for LTFG in section 3. That

way, there are three possible collaboration modalities

between symbolic and statistic approaches. The �rst

is at the fore{end of the parsing, the second is em-

bedded in the core of the parsing and the third deals

with the back{end of the parsing.



First, lexical analysis works as a blind process while

its result conditions a great part of the parsing com-

plexity. [13] investigates several statistic models to

help lexical analysis task in case of Lexicalized Tree

Grammar {which he calls \Supertagging". The most

promising approach turns out to be the one based

on syntactic links probabilities. This is exactly the

probabilities that scored LIG rules would capture in

a stochastic version of LTFG.

In a more embedded way, statistic can complement

the constraints expressed in LTFG. For one thing,

since errors recognition and homophony often disrupt

agreement rules, those constraints have to be cap-

tured in a non exclusive mode. As a possible solution,

a mixing of symbolic and stochastic parsing is o�ered

by LIG framework. Moreover statistical regularities

between words can be captured from a corpus on syn-

tactical grounds instead of simple adjacency [14]. For

example, cooccurences of modi�er and modi�ed trees

can be tuned on a corpus. It should be helpful es-

pecially to �lter out ill-recognized sentence that may

falsely appear well formed.

Finally, a stochastic model allows to rank multi-

ple analysis hypotheses provided by the parser. A

probability estimate of a parsing is given straightfor-

wardly [15] given the path of LIG rules (it is equiva-

lent to the path of tree operations). A rule is put at

the front of the path to express the initiating prob-

ability of the top rule (i.e. the initiating probability

of the dominating tree). The parsing probability is

estimated by the product of individual rules prob-

abilities5. No further search or decoding is needed

to get this probability as it stems directly from the

rules path, which is already at hand6. This proba-

bility takes the lexical frontier into account so that

hypotheses spanning di�erent sentences can be com-

pared. This is especially useful for identifying the

most probable lexical instance of an analysis which

contains a joker element.

7. Conclusion

To integrate ASR and NLP we proposed a parser

which is able, in case of word errors, to process con-

current candidates stemming from the recognizer in

a factored way or to directly predict underspeci�ed

candidates. This linguistic component is independent

from a given recognition system. While de�ned to

output a high level representation for the dialogue

module, it make the recognition decoding progress to

some extent. To exploit this feature further, it seems

promising, thanks to a Linear Indexed Grammar com-

pilation, to use collaboratively our symbolic repairing

strategy {based on a Lexicalized Tree Grammar{ and

5With more computation, the likelihood of the sequence of

words, independently from a given parsing, can also be pro-

vided by an Inside probability as de�ned in [10].
6Pure stochastic parsing with a Tree Grammar has been

proved NP{hard by [16].

stochastic approaches {based on a stochastic version

of the grammar.

References

[1] D. Goddeau and V. Zue. Integrating probabilistic

LR-parsing into speech understanding systems. In

ICASSP'92, vol. 1, pages 181{184. IEEE, 1992.

[2] J. Dowding, Moore R., Andry F., Gawron J.M.,

and Moran D. Combining linguistic and statistical

knowledge sources in natural-language processing for

ATIS. In ARPA Spoken Language Technology Work-

shop, 1995.

[3] Hirschman et al. Integrating syntax and semantics

into spoken language understanding. In SNLW'91,

pages 366{371, 1991.

[4] G. Hanrieder and G. G�orz. Robust parsing of spoken

dialogue using contextual knowledge and recognition

probabilities. In ESCA Tutorial and Research Work-

shop on Spoken Dialogue Systems, Denmark, 1995.

[5] D. Roussel and A. Halber. Filtering errors and re-

pairing linguistic anomalies for spoken dialogue sys-

tems. In ACL/EACL Workshop on Spoken Dialogue

Systems, 1997.

[6] K de Smedt and G. Kempen. Segment grammar :

a formalism for incremental generation. In C. Paris

et al., editor, Natural language generation and com-

putational linguistics. Dodrecht, Kluwer., 1990.

[7] Y. Schabes and R. Waters. Tree insertion gram-

mar: a cubic-time parsable formalism that lexical-

izes context-free grammar without changing the trees

produced. Computational Linguistics, 21(4):480{515,

1995.

[8] D. Roussel. A lexicalized tree grammar with mor-

phological component for spoken language process-

ing : in french. In Colloque Repr�esentation et Outils

pour les Bases Lexicales, Grenoble, 1996.

[9] Y. Schabes and S. Shieber. An alternative conception

of tree-adjoining derivation. Computational Linguis-

tics, 20(1):91{124, 1994.

[10] Y. Schabes. Stochastic Lexicalized Tree-Adjoining

Grammars. In COLING, 1992.

[11] V. Normand and J. Tromp. Collaborative Virtual

Environments : the COVEN project. In FIVE'96,

http://chinon.thomson-csf.fr/coven/, 1996.

[12] J. Bear, J. Dowding, and E. Shriberg. Integrating

multiple knowledge sources for detection and correc-

tion of repairs in human-computer dialog. InACL'92,

pages 56{63, Newark,DE, 1992.

[13] A Joshi and B. Srinivas. Disambiguation of Super

Parts of Speech (or Supertags): Almost Parsing. In

(COLING), 1994.

[14] A. Halber. Capturing long distance dependencies

from parsed corpora. Technical report, ATR, ITL

Dept, Kyoto, December 1994.

[15] P. Resnick. Probabilistic Tree-Adjoining Grammar

as a framework for statistical natural language pro-

cessing. In COLING, 1992.

[16] K. Sima'an. Computational complexity of probabilis-

tic disambiguation by means of tree-grammars. In

COLING, 1996.


