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ABSTRACT

The presented work deals with the experimental iden-
tification of parts in a tree based decoder lexicon, that
are more important for decoding efficiency compared to
less important lexicon parts. Three different methods for
constructing only the most important nodes in a set of
tree lexicon copies are presented: building large trees;
tree cutting; lexicon node removal. This leads to dra-
matic reduction of memory requirements while retaining
the original recognition performance. In addition a reduc-
tion of the active decoding search space can be observed
that leads to improved recognition speed. Although the
presented methods can be generally applied to any HMM
speech recognizer, experiments are performed in the hy-
brid MMI-connectionist/HMM system framework on the
speaker independent 5k WSJ database.

1. INTRODUCTION

To improve decoding speed, tree organized lexicon struc-
tures are preferred to a linear lexicon in most HMM based
large vocabulary speech recognition systems. When used
in connection with bigram (or wide span) language mod-
els, a tree lexicon increases the memory requirements and
a dynamic lexicon allocation strategy is needed. In this
work we investigate the possibility to take the computa-
tional advantage of the tree lexicon structures without in-
creasing the memory requirements by orders of magnitude.
Thus a static lexicon representation in memory might be
still applicable. For this purpose some techniques are ap-
plied that identify and remove those parts from the trees
that seem to be less effective than other lexicon parts that
have to be retained.

For the experiments these techniques are integrated in
the decoder of the MMI-connectionist/HMM speech re-
cognition system. In previous speaker independent large
vocabulary continuous speech recognition tasks this hy-
brid system has been proven to be comparable to soph-
isticated continuous density HMM systems ([1], [2]). Al-
though this system takes additional advantage from fast
HMM likelihood calculation, the methods presented in the
following can be applied to any HMM based speech recog-
nition system.

2. SYSTEM DESCRIPTION

The MMI-connectionist/HMM speech recognition system
consists of a combination of neural networks and dis-
crete HMMs. The neural networks serve as vector quant-
izers (VQ) for mapping the continuous acoustic feature
vectors on discrete VQ-labels. The neural vector quant-
izers are trained using a novel approach (presented in [2])
that maximizes the mutual information between the pro-
duced VQ-labels and the phonetic classes (here: (states

of) HMMs). So the system avoids the inherent inform-
ation loss that can be observed in classical discrete sys-
tems using k-means-VQs. The discrete HMMs incorporate
State-of-the-art techniques like triphone modeling (word
internal or cross-word) and parameter smoothing and re-
duction by a state-clustering method based on phonetic
decision trees that has proven to be useful in LVCSR tasks.
Since the hybrid system is based on discrete HMMs, local
likelihood calculation can be done rapidly by table-lookup
in the HMM states. This leads to a very fast decod-
ing compared to standard Gaussian mixture approaches
where calculation of the mixture densities usually takes
more than 50% of CPU time during decoding [6]. In the
MMI-connectionist/HMM system framework a two-pass
decoding strategy is used: The first pass (that is described
in this paper) incorporates only bigram language models
and the triphone acoustic models in a time-synchronous
beam search decoder. In a second pass wide-span lan-
guage models (e.g. trigrams) can be applied by rescoring
a word lattice produced in the first pass.

3. TREE LEXICON DECODING

3.1. Linear vs. tree lexicon

In small and medium vocabulary tasks (with a only a
few up to 1000 different words) static linear lexicons are
common in most speech recognition systems. For large
vocabulary tasks, tree organized lexical representations
are widely used because redundant computations in dif-
ferent words sharing the same beginning phones (or tri-
phones) are avoided. This leads to a significant speed up
due to less local likelihood calculations and less total prob-
ability updates. The effect of reducing the number of local
(HMM) likelihood evaluations can be also obtained in a
non-tree lexicon by simply caching all calculated HMM
likelihoods. Typically the number of triphone instances in
alarge vocabulary tree lexicon is about a half smaller com-
pared to a linear one. In a unigram (or zero-gram) lan-
guage model case this leads to lower memory requirements
and to a smaller search space. Due to the beam search
(the most common pruning technique), that seems to be
most effective in the first phonemes of a word (where the
tree compression factor is extremely high), the observed
improvements in decoding time are also even higher than
a factor of two [53].

Since the identity of a specific word is unknown at the
start of the tree lexicon, in a bigram (or a wider span
language model) case one (or multiple) tree copies are
necessary for each predecessor word. This leads to an
increase of memory requirements, by a factor given by
the number of different words, that makes the usage of a
static lexicon representation prohibitive. Therefore a dy-
namic tree organization must be applied that ensures that
only those tree copies that are actually needed are held in
the system memory. This dynamic memory organization
leads to an extra CPU load during speech decoding. In
addition the usage of tree copies increases the search space



because equal word paths in different copies of a tree have
to be taken into consideration simultaneously. However,
again due to the beam search pruning, the actual average
number of tree copies needed for decoding is quite small.

In beam search decoders it seems to be useful to ap-
ply the language model information as soon as possible.
When using linear lexicons the language model score can
be applied before the acoustic score since each word iden-
tity is known when entering the lexicon. In a tree lexicon
the full language model can only be applied when a word
becomes unique, i.e. it is delayed compared to the linear
case. To overcome this delay a language model look-ahead
can be used that propagates the best language model score
in each branch of a tree towards its root (see: [6]). This
leads to the additional effect that a certain word (with
high acoustic score, but low language model score) shar-
ing initial phones with another word (with high LM score)
will survive the beam search instead of being pruned in
the linear lexicon case due to its low LM score. Thus in
the case of a tree lexicon with language model look-ahead,
the beam width can be set tighter.

3.2. Combining linear and tree lexicon

The usage of memory consuming tree copies can be
avoided by different combinations of linear and tree lex-
icon representations. This allows for a static lexicon or-
ganization in memory. As shown in [3] and [7] a single
lexicon tree can be used for that part of words in the
language model that are modeled by the back-off bigram
section, i.e. by unigrams, since the language model prob-
abilities do not depend on the previous word. The rest of
the words (with full bigram probabilities) are represented
in a linear lexicon. This introduces a latent mistake in
language model likelihood access because for full bigram
words now the back-off component is also allowed. But
since full bigram probabilities are usually higher than their
back-off counterparts this has apparently minor effects in
decoding. In [4] the former approach is extended by us-
ing a large tree (containing all words) for the unigram
back-off part, and a set of smaller tree copies that contain
only those words with full bigram probabilities. Each of
these full bigram tree copies typically contains much fewer
words compared to the unigram tree, since there are only
few word pairs with full bigram probabilities.

The speech decoder used in the hybrid MMI-
connectionist/HMM system generalizes these methods de-
scribed above in a flexible way by allowing a large tree for
the back-off part, small tree copies for some of the full-
bigram words and linear representations for the rest of
the full-bigram words simultaneously. In this decoder only
the successor trees with the largest numbers of leafs (con-
taining a large number of words) are constructed. Those
remaining successor trees, containing a fewer number of
words, are collapsed to a single linear lexicon. This leads
to a reduction of memory requirements compared to a full
set of tree copies while still using that part of tree copies
that promises to be most effective because it contains the
most words.

In addition, once a word becomes unique (i.e. the fol-
lowing phones in the word are not shared by another dif-
ferent word) in the back-off tree and in the successor trees
those arcs to the following phones in all the trees are dir-
ectly connected to the corresponding parts of the linear
lexicon. Therefore in all the tree copies there will never
appear a unique remaining part of any word. This reduces
the number of nodes in the trees and improves decoding
time since parallel calculations of identical words in differ-
ent successor tree copies are collapsed to one single path of
calculations in the linear lexicon. Since the full language
model score has been take into account when a word in a
tree becomes unique, no language model corrections must
be applied when collapsing the unique word endings in the

trees with the linear lexicon.

3.3. Tree cutting

In [5] is shown that a new word under consideration during
decoding 1s most ambiguous in the beginning phones and
the decoder spends much effort in evaluating the first three
phones. So the main advantage gained by using a tree
lexicon representation is due to the first levels of the tree
(where the tree compression factor is high). In the suc-
cessive levels of the tree there are only very few branches
and most of the words have become unique. This leads to
the idea to use a tree lexicon representation only for the
first phone levels of the tree by cutting off all the trees at
a fixed depth. The arcs in the trees that are cut off are
collapsed with the linear lexicon in a similar way as de-
scribed in the previous section and shown in fig. 1b). At
the cutting points, the remaining language model scores
(that have not yet taken in account in the trees) must be
applied for each word. This tree cutting method leads to
smaller memory requirements since only the nodes in the
beginning levels of the trees are needed in addition to the
linear lexicon. Furthermore, the decoding effort may be
reduced by collapsing parallel tree endings with the lin-
ear lexicon as described above. The method of cutting
the trees at a fixed level can be combined with the one
given in the previous section by building up and cutting
only those trees that contain a certain amount of different
words.

3.4. Removing ineffective tree nodes

As explained above the tree structured lexicon is most ef-
fective in the first phone levels of the trees. This is due
to the fact that many words share the same initial phones
while only a few of them share the same phone sequence
up near to the word endings. Thus the branching and
compression factors near the tree roots are much higher
than at the leafs. Since the advantage of the tree struc-
ture is more effective in phone nodes that are shared by
many words compared to those nodes that are used only
by a few words, it is worth to retain these useful nodes
even if they are in a deep tree level (far away from the
root). Cutting the tree at a fixed level near the root would
destroy these useful nodes. On the other hand the phone
nodes shared by a small number of words are less effective
even if they are close to the tree root. Hence an alternat-
ive way to reduce memory requirements (without loosing
the advantage of the tree structure) is to remove those
nodes from the lexical trees that are shared by less than
a fixed number of words. Again the removed tree nodes
are collapsed with the linear lexicon (see fig. 1c) ) and the
missing language model scores are fully applied as in the
cases described above. As in the case of cutting the trees
above, usage of reduced trees can lead to less memory re-
quirements due to node removal and to improved decoding
speed because of collapsing equal words in different paral-
lel successor trees. Also this method of reducing the tree
structure by removal of less effective phone nodes can be
combined with the methods of tree cutting and building
large trees only.

4. EXPERIMENTS AND RESULTS

The parameters of the MMI-connectionist/HMM system
are estimated using the SI84 training set of the WSJO
corpus. The system uses 4 MMI-neural networks as vec-
tor quantizers with an output layer size of 300 for each
VQ. The NNs quantize the following acoustic feature vec-
tors: 12 MFCCs (incl. mean removal), 12 As, 12 AAs
and logPower+A+AA. There are 11000 HMMs as word
internal triphone models that are state-clustered using a
phonetic decision tree. All tests performed in the experi-
ments use the 5k Nov. 92 evaluation test sets with 330 sen-
tences of 8 different speakers and the standard 5k ARPA



itree cut after 1st level (b)

prev.
word

7/
“node removal with less then 2 words (c)

a) single tree; example from [7]

prev.
word

prev.
word

¢) linear lex. and tree nodes with 2 words (and more)

Figure 1. Reducing a lexicon tree: a) tree cut
after 1st level; b) removal of nodes that contain
less than 2 words

bigram language model. The pronunciations are taken
from the lexicon provided by CMU ([8]) that gives us 50
different phones plus silence and an optional inter-word
silence.

The recognition results for various acoustic beam width
settings are shown in table 1. Although the system allows
the application of a distinct word-end beam width and
of a histogram pruning that limits the number of active
models these are not used in the experiments presented
here. All tests were performed on a DEC ALPHA X1.366
workstation. The initial experiments shown in the first
row as in [1] make use of a 5k linear lexicon that uses more
than 46 thousand static triphones nodes (incl. silences).

When the complete set of 5852 successor tree lexicon
copies is built up (with collapsing the unique word end-
ings in all trees to the linear lexicon) the total number
of triphone nodes increases by a factor of 20 (more than
870 thousand nodes) as shown in the second row of table
1. This makes the usage of static lexicon representations
difficult due to high memory requirements. On the other
hand the decoding speed is increased by a factor of 3 at
similar recognition rates. Furthermore it can be seen that
the acoustic beam width can be set much tighter compared
to the linear lexicon at similar recognition rates.

The third row of table 1 shows the results for building
just two tree copies, one for the back-off tree and one for
the tree of sentence starting words. It can be seen that
such system only uses slightly more (55 thousand) static
triphone nodes compared to the linear case, but recogni-
tion rates and decoding speed is degraded compared to
the full tree copy system.

In the following experiments (no. 4-9) only those tree
copies are established that contain more than 5000, 4000,
3000, 2000, 1000 or 500 words resulting in 4, 15, 32, 66,
186 or 549 different successor trees. The remaining trees
containing less words are collapsed to the linear lexicon
as well as the unique parts in the trees. This increases
the number of triphone nodes up to the half number of
a full set of tree copies, but the decoding speed becomes
even slightly better at comparable recognition rates due to
avoiding calculations in trees without many words. That
indicates it is only worth building up those trees that con-
tain a certain number of words.

The experiments described from the 10th up to the 16th
row make use of a set of 549 tree copies containing more
than 500 words. These trees are cut off after a fixed depth
level of triphone nodes. Cutting reduces the total num-
ber of triphone nodes in the tree copies by approximately
a half if the trees are cut after the first triphone nodes.
This reduction is also observed in the case of building up
and cutting the full set of tree copies (Experiment no. 17).
Table 1 indicates that neither recognition rates nor decod-
ing speed is degraded by cutting. That means the main
advantage of a tree lexicon is gained by the first level of
triphone nodes.

In the experiments shown in the 18th — 27th rows of
table 1 removal of nodes that are shared by only a few
words 1s applied. First the set of 549 tree copies con-
taining more than 500 words is constructed. Then, all tri-
phone nodes in the trees that are shared by less than given
minimum number of words are merged with the linear lex-
icon. In the best cases of these experiments only about
89 thousand nodes are totally needed although recognition
rates are still only slightly degraded and decoding speed
is even higher compared to the full tree copy system. In
the last three experiments the full set of tree copies is
reduced by the inefficient (i.e. sparsely shared) triphone
nodes. This gives a system with high decoding speed at
the best recognition rates with less than four times higher
memory requirements compared to a linear lexicon. This
still allows for a simple static representation of a triphone
lexicon in computer memory using reduced trees.



Exp. Lexicon # trees | max. min. # triph. beam=70 beam=80 beam=100 beam=120
No. type depth | follwrs nodes WER [ RT | WER [ RT | WER [ RT | WER [ RT
1 linear 0 46750 16.8% | 3.5 11.5% [ 89 | 10.6% | 15.8
2 full trees 5852 872518 16.2% 1.0 | 12.7% | 2.2 10.7% | 5.1
3 full trees 2 55124 13.3% | 3.0 | 10.8% | 7.1 10.5% | 13.5
4 full trees 4 64471 13.5% | 2.7 | 10.8% | 6.6 | 10.5% | 12.5
5 full trees 15 103976 12.8% | 2.2 10.7% | 5.7 | 10.5% | 12.0
6 full trees 32 148217 128% | 2.0 | 10.7% | 5.4 | 10.5% | 11.8
7 full trees 66 213407 12.7% | 1.9 | 10.7% | 5.1 10.5% | 11.6
8 full trees 186 335512 16.2% 1.0 | 127% | 1.8 | 10.7% | 4.8 | 10.5% | 11.3
9 full trees 549 499264 127% | 1.8 | 10.7% | 4.7 | 10.5% | 11.3
10 cut trees 549 7 494057 127% | 1.8 | 10.7% | 4.7 | 10.5% | 11.4
11 cut trees 549 6 487877 127% | 1.8 | 10.7% | 4.8 | 10.5% | 11.4
12 cut trees 549 5 476501 127% | 1.7 | 10.7% | 4.7 | 10.5% | 11.3
13 cut trees 549 4 455845 127% | 1.8 | 10.7% | 4.7 | 10.5% | 11.3
14 cut trees 549 3 415908 127% | 1.7 | 10.7% | 4.7 | 10.5% | 11.3
15 cut trees 549 2 353116 16.2% | 09 | 12.7% | 1.7 | 10.7% | 4.7 | 10.5% | 11.4
16 cut trees 549 1 265218 16.4% | 09 | 12.8% | 1.8 | 10.7% | 4.7 | 10.5% | 11.1
17 cut trees 5852 1 516804 16.3% | 0.8 | 128% | 1.6 | 10.7% | 4.6 | 10.5% | 11.3
18 red. trees 549 2 223172 16.4% | 0.9 | 12.9% | 1.6 | 10.8% | 4.4 | 10.5% | 10.1
19 red. trees 549 3 145428 12.9% | 1.7 | 10.8% | 4.7 | 10.5% | 10.1
20 red. trees 549 4 109035 13.0% | 1.7 | 10.8% | 4.5 10.5% 9.9
21 red. trees 549 5 89461 13.1% | 1.8 | 10.8% | 4.7 | 10.5% 9.9
22 red. trees 549 6 77924 13.1% | 1.8 | 10.9% | 4.8 | 10.5% 9.9
23 red. trees 549 7 70560 13.1% | 1.9 | 11.0% | 4.8 | 10.5% | 10.0
24 red. trees 549 8 65713 13.5% | 1.9 | 11.0% | 5.0 | 10.5% | 10.1
25 red. trees 5852 2 319566 16.4% | 0.9 | 12.8% | 1.7 | 10.8% | 4.7 | 10.5% | 10.1
26 red. trees 5852 3 187660 16.4% | 0.9 | 12.9% | 1.8 | 10.8% | 4.5 10.5% 9.8
27 red. trees 5852 3 3 183661 16.4% | 0.8 | 12.9% | 1.6 | 10.8% | 4.5 10.5% 9.7

Table 1. WSJ Nov. 92 5k decoding error rates and real-time factors for different static lexicon represent-

ations
5. REMARKS

All the experiments presented here make use of a static
lexicon representation in memory. Since the introduced
reduced tree copies are used in addition to a linear lex-
icon, the minimum memory requirements are bounded
by the requirements for a linear lexicon. This means in
cases where a static representation of a linear lexicon be-
comes impossible (very large vocabulary, wide-span lan-
guage models), adding reduced static trees will not work.
But the improvements in decoding speed obtained by re-
ducing the tree copies may be also gained in systems that
make use of a (partly built up) dynamic tree lexicon rep-
resentation.

6. CONCLUSIONS

We have presented three different ways for reducing the
static memory requirements of set of tree structured lex-
icon copies in a decoder: i) building up only large trees; ii)
tree cutting at a fixed depth; iii) removal of sparsely used
tree nodes. These methods can be used in combination
without degrading recognition performance while reducing
memory allocation by factors of five to ten. Moreover
these methods additionally seem to lead to a smaller
search space resulting in improvements of decoding speed
compared to the full set of tree copies. Although all ex-
periments shown here used the MMI-connectionist /HMM
system, tree reduction can be applied to any HMM de-
coder.
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