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ABSTRACT

In this paper we present two approaches to deal
with degradation of automatic speech recognizers due
to acoustic mismatch in training and testing environ-
ments. The �rst approach is based on the multi-band
approach to automatic speech recognition (ASR). This
approach is shown to be inherently robust to fre-
quency selective degradation. In the second approach,
we present a conceptually simple unsupervised feature
adaptation technique, based on recursive estimation
of means and variances of the cepstral parameters to
compensate for the noise e�ects. Both techniques yield
signi�cant reduction in error rates.

1. INTRODUCTION

Automatic speech recognizers exhibit rapid degrada-
tion in performance when there is a mismatch between
training and testing acoustic environments. There are
various sources that can cause acoustic distortion, e.g.
presence of additive environmental noise such as ma-
chinery, background speakers etc. as well as convo-
lutive distortions due to use of di�erent communica-

tion channels such as di�erent microphones, telephone
channels and reverberation.

One approach towards addressing this problem, is
to understand the robust mechanism of the human
speech recognition system and try to incorporate it
into the ASR model. Fletcher's work [2] on articula-
tory index suggests that in humans, the linguistic mes-
sage gets decoded independently in di�erent frequency
sub-bands and the �nal decoding is based on merging
the decisions from the sub-bands. This supports the
notion that if some frequency sub-band carries unre-
liable information (possibly due to noise) it could be
de-emphasized in the �nal merging. Our �rst approach
towards robust ASR, the multi-band approach [9, 3] is
motivated by this idea. We show that this approach is
robust towards noise which selectively corrupts only a
few regions of the frequency spectrum.

Another approach towards addressing the problem,
is to characterize the adverse e�ect of the interfering
noise. Additive and convolutive noise is known [11] to
cause a shift in means and change in variances of the
log-spectral components (cepstral coe�cients). The
cepstral mean subtraction (CMS) technique as well as
the RASTA [8] technique were introduced to compen-
sate for the changes in means of the parameters at
the feature level. Though several dynamic adaptation
schemes ( [10, 11, 1]) are being used to adapt both the
means and variances of features and acoustic models
to changing environmental conditions, most of these
approaches are based on maximum likelihood estima-
tion (MLE) methods in the HMM framework. Since
in a connectionist model, input parameters are usu-
ally standardized by subtracting the mean and divid-
ing by the standard deviation for each parameter, to
make the training of the multi-layer perceptron (MLP)
faster, a conceptually simple compensation technique
can be applied.

In our second approach we present a simple recur-
sive estimation of means and variances for each incom-
ing test frame. Similar techniques have been used by
Cook et al. [5] and Gauvain et al. [6].

2. EXPERIMENTAL SETUP

Our experiments are based on the telephone-quality
Bellcore isolated digits database. The database has
a 13-word vocabulary consisting of eleven digits (in-
cluding 'oh') and two control words ('yes', 'no'). The
training set consists of 150 speakers and 50 speakers
comprise the test set. Each speaker has uttered the vo-
cabulary once. The classi�ers used are the phoneme-
based HMM/MLP hybrid classi�ers [4].

3. MULTI-BAND ASR APPROACH

The multi-band approach [9, 3] to automatic speech
recognition is illustrated in Fig. 1. In our multi-band
model the frequency spectrum is divided into 7 sub-



bands, each sub-band comprising of about two crit-
ical bands. The features in each sub-band are the
cepstra obtained from the all-pole modeling of the
PLP [7] cube-root compressed and equalized (equal-
loudness equalization) critical band energies. Indepen-
dent probability estimation for each class (phoneme) is
conducted in each sub-band using a MLP. The class-
conditional log-likelihoods for each frame from each
sub-band classi�er are then non-linearly merged using
another MLP to obtain the merged probability esti-
mates for each class. This merging MLP is trained on
the sub-band log-likelihoods of the training data.

Good

Good

M
e
r
g
in

g

result
Reasonable

B
a
d

Good

F
e
a
tu

r
e
 E

x
tr

a
c
ti

o
n

Feature
sub-groups

Bad element

Speech

probability estimator

probability estimator

probability estimator

probability estimator

Figure 1: Multi-band Model

3.1. Experimental Results

It has been shown [9, 12] that for well-matched train-
ing and test conditions, there is no loss of performance
from the multi-band approach. To test the perfor-
mance of the model with real-noise we used some of
the noise samples from the NOISEX-92 database, viz.
destroyer engine, factory2, pink, white,volvo, babble
and high-frequency radio channel noise. Each noise
was added to the test speech data after being scaled

so that the performance of the conventional full-band
ASR system degraded from baseline error of 2.5% to
about 25%.

Additive noise Conventional Multi-band

clean (no noise) 2.5 1.2

destroyer-engine 26.6 18.5

factory noise 26.2 8.2
pink 24.3 11.7

babble 24.6 10.3
volvo 24.6 6.2
volvo (lab recorded) 25.2 15.4

white 24.8 34.6
high-frequency radio 25.8 36.9

Table 1: Word error (%) on Bellcore isolated digits

Noise B1 B2 B3 B4 B5 B6 B7

clean 45.5 14.9 18.6 14.0 11.8 18.0 25.7

engine 93.1 34.5 43.4 53.1 65.4 82.0 81.4
factory 94.3 51.7 25.1 18.9 13.2 19.4 27.4
pink 94.9 53.1 40.0 34.6 25.7 32.3 66.5

babble 93.1 48.9 50.0 28.6 15.8 20.3 37.1
volvo 93.8 55.5 18.8 14.0 12.0 18.3 25.5
volvo2 78.6 64.6 59.5 56.0 37.7 44.8 47.5

white 94.3 42.2 52.5 58.0 52.8 71.7 87.2
radio 86.8 48.0 58.6 73.4 65.2 86.9 91.4

Table 2: Word error (%) in the 7 subbands (B1 to B7
refer to the 7 subbands respectively, engine refers to
destroyer-engine noise, volvo2 refers to the lab recoded
volvo noise and radio refers to the high-frequency radio
noise).

From the results (Table 1) we see that the multi-
band approach improves the performance by 50% on
average for the �rst six noise cases as compared to
the conventional system. These noise cases are such
that they corrupt some sub-bands much more than the
other sub-bands as shown in Table 2 (e.g., for the case
of factory noise, sub-bands 1 and 2 (B1,B2) are more
corrupted than the other 5 sub-bands). In these cases
a further improvement in performance can be achieved
by leaving out the highly corrupted sub-bands from the
merging process.

The white noise and high-frequency radio channel
noise results in degradation of all sub-bands (last 2
rows of Table 2) and hence the multi-band approach
is found to be ine�ective for these noise cases.

The results in Table 1 support the notion of in-
herent noise robustness of the multi-band approach to
frequency-selective degradation. Also, it is noteworthy
that the improvement in performance does not require

any additional processing.

4. FEATURE ADAPTATION

In connectionist model (HMM/MLP hybrid framework)
for ASR the input feature vector is usually scaled to
zero mean and unity variance as

�xk(t) =
xk(t)� �train

k

�train
k

(1)

where xk(t) is the kth input parameter at time (frame)
t, �train

k
and �train

k
are the mean and the standard de-

viation of the kth input parameter computed over the
entire training data. This normalization is generally
carried out to make training of the MLP faster and
avoid problems of getting stuck in a local minima.
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Figure 2: Histogram of a cepstral coe�cient of clean data and data contaminated with white noise

In the presence of acoustic mismatch during train-
ing and testing conditions, the observed signal y can
be modeled as y = (x + n) � h where x is the input
signal, n is the additive noise and h is the convolutive
linear channel distortion. Based on this model, it has
been shown [11] that the e�ects of the environment
show up as a shift in means and change in variance of
the input cepstral parameters. These e�ects are illus-
trated in Fig. 2(a) which compares the histogram of a
cepstral coe�cient from matched (clean) condition to
that when additive white noise is present. Both these
parameters have been normalized as in Eq. 1 using the
mean and variance computed over the training data.
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Figure 3: Average reduction in word error (%) using
adaptation as compared to the case with no adaptation

In order to compensate for the change in mean and
variance the new values can be re-estimated over the
entire current utterance. However for real-time appli-
cation the delay introduced in processing by waiting
till the end of the utterance is unacceptable. This de-
lay can be avoided by estimating the mean and vari-
ances over the past utterances (words in our case).

Fig. 3 represents the e�ect of using increasing num-
ber of words to estimate the mean and variance. It
is seen that using as few as 5 words results in stable
recognition errors for both clean and noisy conditions.

The above technique requires bu�ering of feature
vectors corresponding to 5 words. Also it is computa-
tionally ine�cient. In order to reduce the memory re-
quirements we recursively estimate the mean and vari-
ances for each incoming frame using an integrator as

�k(t) = ��k(t� 1) + (1� �)xk(t) (2)

sk(t) = �sk(t� 1) + (1� �)x2k(t) (3)

�2
k(t) = sk(t) � �2

k(t) (4)

�xk(t) =
xk(t)� �k(t)

�k(t)
(5)

where �k(t) is the mean of the parameter xk at
time frame t, � is the forgetting factor used to forget
the e�ect of past frames. The average sum of squares
sk is estimated in a similar manner as shown in Eq 3.
Finally the variance �2

k
is estimated as in Eq. 4 followed

by the normalization in Eq. 5. Series of experiments
showed that � = 0:995 results in stable estimates.

Fig. 2(b) represents the e�ect on the distribution of
the cepstral coe�cients in Fig. 2(a) when only mean
compensation is carried out according to Eq. 2 and
the variance is that of the training (�train

k
). Fig. 2(c)

represents the e�ect when both mean and variance are
compensated. It supports the fact that both the mean
and variance need to be adapted to make the distribu-
tion under noisy condition similar to that of the clean
case.

4.1. Experimental results

Table 3 shows the word recognition error without adap-
tation (Eq. 1) and using adaptation of mean and vari-



ance (Eqs. 2- 5). The results indicate that for matched
training and test conditions the simple adaptation tech-
nique does not a�ect performance but under noise con-
ditions it results in approximately 75% reduction in
error rates on an average.

Additive noise No adaptation Adpatation

clean (no noise) 2.5 1.8

destroyer-engine 26.6 5.2
factory noise 26.2 4.2
pink 24.3 3.7
babble 24.6 5.7
volvo 24.6 3.5

volvo (lab recorded) 25.2 10.0
white 24.8 9.7
high-frequency radio 25.8 9.2

Table 3: Word error (%) on Bellcore isolated digits

4.1.1. Comparison of mean-only and mean and vari-

ance adaptation

In order to further investigate the importance of mean
and variance adaptation over mean-only adaptation as
suggested by Figs. 2(b), 2(c) we carried out a series of
experiments with the two techniques. The techniques
were tested with the 8 noise cases as mentioned in
Section 3.1. The noise was added at di�erent signal-
to-noise (SNR) ratio ranging from 20dB to -5dB.
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Figure 4: Average word error rates of the 8 noise cases
for di�erent SNR and adaptation schemes

From Fig. 4 it is seen that both the adaptation
techniques result in signi�cant reduction in error rates
over the no adaptation case. However, the additional
variance adaptation results in further signi�cant re-
duction in error rates as the SNR decreases.

5. CONCLUSION

In this paper we have described two approaches to ro-
bust ASR under conditions of environmental degrada-
tion. The adaptation approach to noise compensation
is e�ective under the assumption that the current noise
characteristics are similar to that over the period of es-
timation. The multi-band approach on the other hand
works reasonably well for frequency selective degrada-
tion without any adaptation.
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