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ABSTRACT

In this paper we present a new model-based compensation

technique called Delta Vector Taylor Series (DVTS). This
new technique is an extension and improvement over the

Vector Taylor Series (VTS) approach [7] that addresses

several of its limitations. In particular, we present a
new statistical representation for the distribution of clean

speech feature vectors based on a weighted vector code-

book. This change to the underlying probability density
function (PDF) allows us to produce more accurate and

stable solutions for our algorithm. The algorithm is also

presented in a EM-MAP framework where some the en-
vironmental parameters are treated as random variables

with known PDF's. Finally, we explore a new compensa-

tion approach based on the use of convex hulls.

We evaluate our algorithm in a phonetic classi�cation task
on the TIMIT [5] database and also in a small vocabu-

lary size speech recognition database. In both databases

arti�cial and natural noise is injected at several signal to
noise ratios (SNR). The algorithm achieves matched per-

formance at all SNR's above 10 dB.

1. Introduction

Over the last years several techniques have been proposed
to deal with the problem of speech recognition in noisy en-

vironments. Some of them such as PMC [3], or MLLR [6]

have used the recognition engine and its rich statistical
representation (more than 90,000 Gaussians in systems

like SPHINX-3 and HTK [9]) to model and compensate

for the e�ects of the environment on speech recognition
systems. Other techniques like CDCN [1] and POF [8]

among others have used a reduced set of Gaussian mix-

tures (typically 256 or less) to model the clean speech
feature vectors and preprocess the noisy speech features

vectors to e�ectively "clean" the features before being pro-

cessed by the recognition engine.

The use of a rich statistical representation improves per-
formance, but has the drawback of using the whole speech

recognition engine with its associated complexity. An

ideal robust recognition technique should have the advan-
tages of a rich statistical representation and at the same

time being simple and fast in its operation.

The Delta Vector Taylor Series (DVTS) approach is an

attempt in this direction. It tries to gain the bene�ts

of a rich statistical representation and a low complexity
technique for robust speech recognition. It tries to achieve

these goals by using a di�erent statistical representation
for the speech feature vectors.

The outline of the paper is as follows. In section 2 we
describe the DVTS algorithm. In section 3 we brie
y

describe the necessary modi�cations to the algorithm to

make it work as a �lter. In section 4 we describe our
experimental results and �nally in section 5 we present

our conclusions.

2. New Algorithm: Delta-VTS

DVTS models the speech feature vectors as a weighted
sum of multidimensional Dirac deltas

p(x) =

M�1X
k=0

P [k] �(x� xk) (1)

where each vector function �(x� xk) is modeled as

�(x� xk) =

D�1Y
i=0

�(xi � xi;k) (2)

P [k] is an a priori probability of observing a particular
delta. The sum of these probabilities must add up to one.

This novel representation of the PDF of x has several ad-

vantages. First of all it greatly simpli�es the mathemat-

ical assumptions of the VTS [7] algorithm. It produces

a simple, fast, robust and direct formulation of the EM

solutions already presented in [7].

In this paper we assume a model of the environment in

which speech is corrupted by unknown additive stationary
noise and unknown linear �ltering

Z(!) = X(!)jH(!)j2 +N(!) (3)

where Z(!) represents the power spectrum of the de-

graded speech, X(!) is the power spectrum of the clean

speech, jH(!)j2 is the transfer function of the linear �lter,

and N(!) is the power spectrum of the additive noise.

In the log-mel-spectral domain this can be expressed as

z = x+ log(exp(q) + exp(n� x)) (4)

or in more general terms

z = x+ f(x;n;q) (5)



where q is the log-mel-spectra of jH(!)j2 . We refer to
f(x;n;q) in equation 5 as the environmental function.

In the regular VTS approach p(x) is represented by a mix-

ture of Gaussians and as a result p(z) cannot be computed

analytically. In fact, even though the resulting PDF is not
Gaussian we still model it as Gaussian for lack of a better

solution. In DVTS the solution for p(z) can be computed

directly with no approximations as

p(z) =

M�1X
k=0

P [k] �(z� zk) (6)

where zk is equal to xk + f(xk;n;q). Notice that this is
due the the highly localize nature of p(x) around the xk
sample vector points.

If the noise is assumed to have a Gaussian distribution

p(n) = Nn(�n;�z) we still obtain a direct solution with
no approximations for p(z) as

p(z) =

M�1X
k=0

P [k]Nz(zk;�z) (7)

The result for p(z) can be interpreted as a PDF modelled

via Parzen windows with Gaussian kernels all sharing the

same covariance. Under these assumptions equation 7
is trivially obtained from the de�nition of p(x) and the

vector relation z = x+ f(x;n;q).

The goal of the algorithms is to �nd the environmental pa-

rameters � = fq;n;�zg
1 that given an ensemble of noisy

speech features vectors Z = fz0; : : : ;zT�1g maximize the

log likelihood that this ensemble has been produced by

the PDF of the noisy speech feature vectors p(z). If addi-
tional information is available about the a priori PDF's of

the environmental parameters �, the maximization prob-

lem can be reformulated using a MAP framework. In this

paper we will assume previous knowledge of the environ-

mental parameters � as modelled by a simple Gaussian

distribution with diagonal covariance ��.

Notice that the use of diagonal covariances is done for
simplicity and the formulation can be trivially extended

to a full covariance matrix. Also notice that the treatment

of the environment is not tied to our particular choice of
environmental function. Any environmental function can

be used provided it is smooth and its derivatives exist up

to a certain order. As in any EM formulation we start by
de�ning the Q function as

Q(�; �0) =

T�1X
t=0

M�1X
k=0

P [kjzt; �] log(p(zt; kj�
0
) + p(�

0
)) (8)

by taking derivative with respect to �0 we obtain the sys-

tem of equations � = (�+ ��)�
0 where � is equal to

1In general we will refer to the environmental parameters

with the � symbol

0
BBBB@

T�1;M�1X
t=0;k=0

P [kjzt] (I�Fk)
t
�
�1

z (zt � zk)

T�1;M�1X
t=0;k=0

P [kjzt] (Fk)
t��1z (zt � zk)

1
CCCCA (9)

and � is equal to
PT�1;M�1

t=0;k=0
P [kjzt]Mk which in turn is

equal to

�
(I�Fk)

t��1z (I�Fk) (I�Fk)
t��1z Fk

F
t
k�

�1

z (I� Fk) F
t
k�

�1

z Fk

�
(10)

where Fk is equal to the derivative of f(xk;n
0;q0) with

respect to q0 or n0 (they are the same with di�erent signs),

i.e., rq0 f(xk;n
0;q0).

Notice that in taking derivatives we have approximated

zk = xk + f(xk;n
0; q0) by its �rst order vector Tay-

lor series approximation zk � xk + f(xk;n
0;q0) +

rn0f(xk;n
0;q0)(n0 � n) + rq0 f(xk;n

0;q0)(q0 � q). Oth-

erwise when taking the derivative of the Q function we
would not obtain a solution. In e�ect, we have linearized

a nonlinear relationship (zk = xk + f(xk ;n
0;q0)) around

our current estimates of q and n.

To solve for �0 we need to solve the above system of equa-
tions. Notice that the � + �� matrix can be robustly

inverted due to its symetricities. The addition of �� to

� has the practical property of conditioning the � matrix
making its inversion a much more stable problem.

The EM algorithm [2] provides an iterative solution to the

maximization problem. It also guarantees that the like-

lihood function does not decrease at each iteration. For
further details of the EM algorithm applied to a similar

derivation (the VTS approach) see [7].

To summarize, to maximize the Q(�; �0) function with re-

spect to the environmental parameters �0 our algorithm
works in three stages:

1. Training or learning of the distribution of p(x). This

step is performed using the well known EM [2] al-

gorithm and is done with su�cient amounts of clean
training data.

2. Estimation of environmental parameters � using EM.
Given a stream of noisy speech feature vectors Z =

fz0; : : : ; zT�1g and the PDF of the clean feature vec-

tors p(x), �nd the unknown environmental parame-
ters � that maximize the likelihood of observing the

noisy data.

3. Compensation of the noisy feature vectors. Given
the noisy speech feature vectors Z and their es-

timated PDF p(z) estimate the unobserved clean

speech feature vectors X = fx0; : : : ;xT�1g.

The compensation is done in two di�erent ways. In the
�rst one we compute the conditional expectation as a con-

vex hull over the original K clean speech feature vectors



xk that describe p(x).

E[xtjzt] =

Z
X

p(ztjxt)p(xt) xt
p(zt)

dxt

=

Z
X

p(xt)Nzt(xt + f(xt;n;q);�z) xt

p(zt)
dxt

=

M�1X
k=0

P [kjzt] xk (11)

The original VTS compensation is done using a zeroth

order vector Taylor approximation i.e., replacing xt by

zt � f(xk;n;q) and moving zt out of the integral

E[xtjzt] � zt �

M�1X
k=0

P [kjzt] f(xk;n;q) (12)

We report results using both compensation algorithms.

3. Online Compensation

The algorithm so far has been described as a batch com-
pensation process. In practice this imposes several restric-

tions for real-time operation. It is therefore important to

study the possibility of an online version of the algorithm.

As in all EM algorithms accumulators can be de�ned
where the contributions of each speech feature vector can

be stored. In most EM problems the conversion from a

batch based algorithm to an online algorithm is as simple
as multiplicating by a forgetting factor each of the men-

tioned contributions. Another popular alternative is to

process windows of data and pass from window to win-
dow the previous accumulators adding them to the current

ones weighted by a appropriate factor.

For every window k we compute a �k as

�k = r1�k + r2�k�1 (13)

where r1 + r2 must add up to one. Once the �k is com-

puted we can solve the �k = (�k + ��)�
0

k equation and

search for the environmental parameters �0k on this par-
ticular window of speech applying a MMSE estimator.

4. Experimental Results

To study the validity of the proposed algorithm on noisy

speech we performed a series of experiments on the

TIMIT [5] phonetic classi�cation task injecting arti�cially
produced noise at several signal-to-noise ratios. Pho-

netic modeling, classi�cation, and word recognition was

performed using the Stochastic Trajectory Modelling ap-
proach (STM) [4].

STM models were trained using 3695 utterances from 462

di�erent speakers. The testing set contained 250 utter-

ances from 50 di�erent speakers not seen in the training
set. The speech was �rst parametriced into log-mel power

spectra and compensation was performed in this domain.

Once the noisy data was compensated it was transformed
via a Discrete Cosine Transform into the cepstrum space

where STM classi�cation and recognition was performed.
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Figure 1: Performance of the DVTS algorithm at several

SNR's on the TIMIT phonetic classi�cation task.

Similar experiments were also done injecting naturally oc-

curring noise collected in an o�ce environment.

Figure 1 shows phonetic classi�cation performance vs. sig-

nal to noise ratio (SNR) at di�erent dB levels. The upper
continuous line curve represents the performance of the

system when the STM models are trained and tested in

matched conditions, i.e., at the same SNR. The lower
continuous line represents the performance of the STM

phonetic classi�er when the system is trained with clean

speech and tested on noisy speech. These two lines repre-
sent upper and lower bounds respectively for the perfor-

mance of any robustness algorithm.

The upper dotted line represents an ideal experiment in

which the clean utterance feature vectors were used as
p(x). This case would occur with simultaneous recordings

of clean and noisy speech.I represents an ideal situation

in which the statistics of the clean data are exactly the
clean speech feature vectors. The dotted line with stars

represents the performance of the DVTS algorithm using

1000 Dirac deltas trained from 2000 training utterances.
Finally, for comparison, the continuous line with bullets

represents the performance of a VTS algorithm with 256

Gaussians.

As we can see the DVTS algorithm outperforms the VTS
at SNR's below 15 dB and both of them achieve matched

performance at SNR's above 20 dB.

Figure 2 shows the same experiments but comparing the

e�ect of a convex hull compensation module vs the normal
pseudo MMSE estimator described in section 2. The dot-

ted line represents the performance of DVTS using the

pseudo MMSE estimator. The dotted line with bullets
shows the performance of the convex hull compensation.

Although this should have certain error repair properties,

performance is not as good as the original pseudo con-
ditional expectation formulation employed in VTS. The

di�erence is larger at high SNR's. We believe this drop in
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Figure 2: Comparison of two di�erent compensation

schemes. Pseudo MMSE vs convex hull MMSE.

performance is due to quantization e�ects. At high SNR's
most of the distortion introduced by the environment is

a simple shift and a MMSE estimator in this form does

not su�er the quantization error e�ects introduced by a
convex hull formulation. At lower SNR's the environment

has a more complex e�ect on the signal and quantization

e�ects are less severe. We believe that a larger number of
deltas in p(x) should alleviate this problem.

In all cases the algorithm produced signi�cant improve-

ments in phonetic classi�cation performance. Notice that

almost matched performance is obtained when the p(x)
statistics are built from the clean uncontaminated speech

feature vectors. This experiment shows the dependency

of the technique on a proper choice of deltas to build p(x).

Figure 3 shows our results on a 107 word vocabulary

recognition task recorded in our lab. DVTS performs

very similarly to VTS an both achieve signi�cant gains

in recognition accuracy at all SNR's.

5. Conclusions

In this paper we have introduced our preliminary results

with a new environmental compensation technique able

to cope with the e�ects of unknown environments on
speech feature vectors. The technique uses a novel sta-

tistical representation that enables us to simplify many

of the approximations needed with Gaussian mixtures
PDF's. The algorithm presented here provides signi�-

cant improvement over previous work, specially at lower

SNR's. We have also described how to turn this compen-
sation algorithm into an online adaptable �lter, able to

adapt to the changing conditions of the environment.

6. REFERENCES

1. A. Acero. Acoustical and Environmental Robustness

in Automatic Speech Recognition. PhD thesis, CMU,

Department of Electrical and Computer Engineering,

DVTS   

VTS    

no comp

0 5 10 15 20 25 30 35 40
20

30

40

50

60

70

80

90

100

SNR in dB

%
 A

cc
ur

ac
y 

in
 w

or
d 

re
co

gn
iti

on

Figure 3: Performance of the DVTS algorithm at several
SNR's on a local 107 words database.
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