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Abstract

This paper presents a method of extracting the de-
sired signal from a noise-added signal as a model
of acoustic source segregation. Using physical con-
straints related to the four regularities proposed by
Bregman, the proposed method can solve the prob-
lem of segregating two acoustic sources. Two simula-
tions were carried out using the following signals: (a)
a noise-added AM complex tone and (b) a noisy syn-
thetic vowel. It was shown that the proposed method
can extract the desired AM complex tone from noise-
added AM complex tone in which signal and noise
exist in the same frequency region. The SD was re-
duced an average of about 20 dB. It was also shown
that the proposed method can extract a speech signal
from noisy speech.

1 Introduction

Extraction of the desired signal from noisy signal is a
important problem not only in robust speech recog-
nition systems but also in various signal processing
systems. The aim of this work is to solve the prob-
lem by constructing an auditory segregation model
based on auditory scene analysis (ASA).

Bregman[1] reported that the human auditory sys-
tem uses four psychoacoustically heuristic regulari-
ties: (i) common onset and o�set; (ii) gradualness of
change; (iii) harmonicity; and (iv) changes taken in
an acoustic event, related to acoustic events for solv-
ing the problem of ASA. Typical models of auditory
segregation based on ASA are Brown and Cooke's
model[2] and Nakatani et al.'s model[3]. All these
models use regularities (i) and (iii), and an amplitude
(or power) spectrum as the acoustic feature. Thus
they can not extract the desired signal from a noisy
signal completely when the signal and noise exist in
the same frequency region. And if background noise
increases, it seems that these models can not extract
the desired signal with high precision.

In contrast, we have discussed the need for using
not only the amplitude spectrum but also the phase
spectrum for completely extracting the desired sig-
nal from a noisy signal when both signals exist in
the same frequency region[4, 5]. In this paper, we
present a method for extracting the desired signal
from a noisy signal by using physical constraints re-
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Figure 1: Auditory segregation model.

lated to regularities (i) { (iv), as an auditory segrega-
tion model. In particular, we consider the problem of
extracting the desired signal from the following sig-
nals: (a) a noise-added AM complex tone and (b) a
noisy synthetic vowel.

2 Auditory segregation model

The auditory segregation model shown in Fig. 1 con-
sists of three parts: (a) auditory �lterbank, (b) sep-
aration, and (c) grouping. The auditory �lterbank
is constructed using a gammatone �lter as an \ana-
lyzing wavelet." The separation block uses physical
constraints related to heuristic regularities (ii) and
(iv). The grouping block uses physical constraints re-
lated to heuristic regularities (i) and (iii), and signal
reconstruction in the grouping block is done with the
inverse wavelet transform.

2.1 Formulation of the problem of seg-
regating two acoustic sources

In this paper, we de�ne the problem of segregat-
ing two acoustic sources as \the segregation of the
mixed signal into original signal components, where
the mixed signal is composed of two signals gener-
ated by any two acoustic sources." We formulate it
as follows:
Firstly, we can observe only the signal f(t):

f(t) = f1(t) + f2(t); (1)

where f1(t) is the desired signal and f2(t) is a noise.
The observed signal f(t) is decomposed into its fre-
quency components by an auditory �lterbank. Sec-
ondly, outputs of the k-th channel, which correspond
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to f1(t) and f2(t), are assumed to be

Ak(t) sin(!kt + �1k(t)) (2)

and
Bk(t) sin(!kt+ �2k(t)); (3)

respectively. Since the output of the k-th channel
Xk(t) is represented by

Xk(t) = Sk(t) sin(!kt + �k(t)); (4)

where

Sk(t) =

q
A2

k(t) + 2Ak(t)Bk(t) cos �k(t) +B2

k(t)

(5)
and

�k(t) = tan�1
�
Ak(t) sin �1k(t) +Bk(t) sin �2k(t)

Ak(t) cos �1k(t) +Bk(t) cos �2k(t)

�
;

(6)
then the amplitude envelopes of the two signals Ak(t)
and Bk(t) can be determined by

Ak(t) =
Sk(t) sin(�2k(t)� �k(t))

sin �k(t)
(7)

and

Bk(t) =
Sk(t) sin(�k(t)� �1k(t))

sin �k(t)
; (8)

respectively, where �k(t) = �2k(t)��1k(t) and �k(t) 6=
n�; n 2 Z. Thus, if the four parameters, Sk(t), �k(t),
�1k(t), and �2k(t) are calculated, Ak(t) and Bk(t)
can be calculated by the above equations. Finally,
f1(t) and f2(t) can be reconstructed by grouping con-

straints. f̂1(t) and f̂2(t) are reconstructed f1(t) and
f2(t), respectively.
In this paper, we assume �1k(t) = 0 and �k(t) =

�2k(t). Additionally, we consider the problem of seg-
regating two acoustic sources in which the localized
f1(t) is added to f2(t).

2.2 Calculation of the four parameters

The amplitude envelope Sk(t) and phase �k(t) of
Xk(t) are determined by using the amplitude and the
phase spectra de�ned by the complex wavelet trans-
form. Since we assume �1k(t) = 0, �k(t) = �2k(t),
we must know the input phase �k(t): The input-phase
�k(t) is derived by applying three physical constraints
related to regularities (ii) and (iv) as shown below[5].

1. Gradualness of change

This constraint is dAk(t)=dt = Ck;R(t), where
Ck;R(t) is an Rth-order di�erentiable polyno-
mial. By putting dAk(t)=dt = Ck;R(t) into equa-
tion (7), and solving the resulting linear di�er-
ential equation, we obtain

�k(t) = arctan

�
Sk(t) sin�k(t)

Sk(t) cos �k(t) + Ck(t)

�
; (9)

where unknown function Ck(t) is �
R
Ck;R(t)dt+

Ck;0. In order to determine Ck(t), we estimate
Ck(t) using the Kalman �lter.

2. Smoothness

This constraint, the smoothness for Ak(t), is a
function of the estimated Ck(t). By consider-
ing the relationship between Ak(t) and Ck(t)
from Eqs. (7) and (9), we can interpret the
smoothness for Ak(t) in order to determine the
smoothest Ck(t). Therefore, by calculating the
candidates of Ck(t) interpolated using the spline
function within the estimated error, and then
by calculating a correct solution from the can-
didates of Ck(t), the smoothest Ak(t) can be de-
termined uniquely.

3. Changes taken in an acoustic event

This constraint is

Ak(t)

kAk(t)k
�

A`(t)

kA`(t)k
; k 6= `: (10)

With this constraint, �k(t) is determined when
the correlation between Ak(t) and A`(t) becomes
maximum at any Ck(t) within the estimated
error-region.

2.3 Grouping constraints

The aim of the grouping constraints is to extract the
desired signal from the noise-added signal using reg-
ularities (i) and (iii) proposed by Bregman. There-
fore, the grouping block takes a solution for the prob-
lem of segregating two acoustic sources and applies to
Xk(t), in which two acoustic signals exist in the same
time region. In other words, it applies the solution
to Xk(t), if either of the two physical constraints as
shown below are satis�ed[5].

1. Harmonicity

When, the channel number k corresponds to an
integer multiple of the fundamental frequency
F0, n � F0; n = 1; 2; � � � ; NF0 . This constraint
means that \when a body vibrates with a repeti-
tive period, its vibrations give rise to an acoustic
pattern in which the frequency components are
multiples of a common fundamental."

2. Common onset and o�set

When onset and o�set of Xk(t) for f1(t) match
those ofXk(t), corresponding to the fundamental
frequency F0. This constraint means that \unre-
lated sounds seldom start or stop at exactly the
same time."

3 Simulations and Results

We carried out two simulations on segregating two-
acoustic sources using noise-added signal f(t) to show
that the proposed method can extract the desired sig-
nal f1(t) from it. The two simulations are composed
as follows:
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Figure 2: f1(t) and f(t) (SNR=10 dB).

1. Extracting an AM complex tone from a noise-
added AM complex tone.

2. Extracting a speech signal from a noisy speech.

We use two types of measures to evaluate the
performance of the segregation using the proposed
method.

One is the power ratio in terms of the amplitude
envelope Ak(t), i.e., the likely SNR. The aim of using
this measure is to evaluate the segregation in terms of
the amplitude envelope where signal and noise exist
in the same frequency region. This measure is called
\Precision," and is de�ned by

Precision(k) := 10 log
10

R T
0
A2

k(t)dtR T
0
(Ak(t)� Âk(t))2dt

;

(11)
where Ak(t) is the amplitude envelope of original sig-

nal f1(t) and Âk(t) is the amplitude envelope of the

segregated signal f̂1(t).

The other is spectrum distortion (SD). The aim of
using this measure is to evaluate the extraction of a

desired signal f̂1(t) from noise-added signal f(t). This
measure is de�ned by

SD :=

vuut 1

W

WX
!

 
20 log

10

~F1(!)

~̂
F 1(!)

!2

; (12)

where ~F1(!) and
~̂
F 1(!) are the amplitude spectra

of f1(t) and f̂1(t), respectively. Moreover, the frame
length is 51:2 ms, the frame shift is 25:6 ms, W is
analyzable bandwidth of �lterbank (about 6 kHz),
and the window function is Hamming.

The reduced SD of f1(t) is the SD di�erence be-

tween f(t) and f̂1(t).
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Figure 3: SDs of f̂1(t) and f(t).
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Figure 4: Precision property for f̂1(t).

3.1 Simulation 1

This simulation assumes that f1(t) is an AM complex
tone as shown in Fig. 2, where F0 = 200 Hz, N = 10,
and envelope of f1(t) is sinusoidal (10 Hz), and f2(t)
is a bandpassed random noise, where the bandwidth
of f2(t) is about 6 kHz. Seven types of f(t) are used as
simulation stimuli, where the SNRs of f(t) are from
�10 to 20 dB in 5-dB steps. The mixed signal for
SNR= 10 dB is plotted in Fig. 2.

The simulations were carried out using the seven
mixed signals. The average SDs of f1(t) and f(t) are
shown in Fig. 3. As a result, it is possible to reduce
the SD by about 20 dB as noise reduction by using
the proposed method. For example, when the SNR
of f(t) is 10dB, the proposed method can segregate
Ak(t) with high precision as shown in Fig. 4, and it

can extract the f̂1(t) shown in Fig. 4 from the f(t)
shown in Fig. 2. The signal is reconstructed by con-
sidering �1k(t) = �k(t), because phase information
can not be determined by the assumption �1k(t) = 0.
The proposed model can extract the amplitude in-
formation of AM complex tone from a noise-added
signal f(t) with a high precision in which signal and
noise exist in the same frequency region. Moreover,
the proposed model can also extract the desired AM
complex tone from mixed AM complex tones with
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Figure 5: f1(t) and f(t) (SNR=10dB).

di�erent fundamental frequencies.

3.2 Simulation 2

This simulation assumes that f1(t) is a synthetic
vowel, as shown in Fig. 5, where F0 = 125 Hz,
NF0 = 40, and it is the vowel /a/ synthesized by
LMA, and that f2(t) is a bandpassed random noise
with a bandwidth of about 6 kHz. Three types of
f(t) are used as simulation stimuli, where the SNRs
of f(t) are from 0 to 20 dB in 10-dB steps. The mixed
signal for SNR= 10 dB is plotted in Fig. 5.
The simulations were carried out using the three

mixed signals. The average SDs of f1(t) and f(t)
are shown in Fig. 6. Hence, it is possible to reduce
the SD by about 15 dB as noise reduction by using
the proposed method. For example, when the SNR
of f(t) is 10 dB, the proposed method can segregate
Ak(t) with high precision, as shown in Fig. 7, and

it can extract the f̂1(t) shown in Fig. 7 from the
f(t) shown in Fig. 5. Therefore, the proposed model
can also extract the amplitude information of speech
f1(t) from a noisy speech f(t) with high precision
when speech and noise exist in the same frequency
region. Hence, this method can be used to extract a
speech signal from noisy speech.

4 Conclusion

In this paper, we proposed a method of signal ex-
traction from noisy signal using physical constraints
related to the four regularities proposed by Bregman,
and by solving the problem of segregation two acous-
tic sources. We carried out two simulations on segre-
gating two-acoustic sources using noise-added signal
f(t) to show that the proposed method can extract
the desired signal f1(t) from it. Simulation 1, showed
that the proposed method can extract an AM com-
plex tone from a noise-added AM complex tone in
which signal and noise exist in the same frequency
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Figure 6: SDs of f̂1(t) and f(t).
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Figure 7: Precision property for f̂1(t).

region, with high precision. In particular, using the
proposed method, it is possible to reduce the SD by
about 20 dB. Moreover, simulation 2 showed that
the proposed method can also extract a speech signal
from noisy speech.
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