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ABSTRACT

We propose using Hidden Markov Models (HMMs) as-
sociated with the cepstrum coefficients as a speech sig-
nal model in order to perform equalization or noise re-
moval. The MUlti-path Stochastic Equalization (MUSE)
framework allows one to process data at the frame level:
it is an on-line adaptation of the model. More precisely,
we apply this technique to perform bias removal in the
cepstral domain in order to increase the robustness of au-
tomatic speech recognizers. Recognition experiments on
two databases recorded on both PSN and GSM networks
show the efficiency of the proposed method.

1 INTRODUCTION

Numerous studies have been carried out in order to in-
crease the robustness of automatic speech recognizers
to disturbances (ambient noise, channel distortion, Lom-
bard effect...). These studies include, at the preprocess-
ing stage, the design of robust features and associated
distances and the use of spectral, cepstral subtraction,
etc...The increase of robustness can also be performed at
the pattern matching stage, using methods such as paral-
lel model combination [2]. In general, the speech signal is
rough or not taken into account .

For years, Hidden Markov Models (HMMs) have been
used to model various speech units; thus, they can be
viewed as a complex representation of the speech sig-
nal [1] [6]. In [1], the HMM models both the speech signal
and an additive stationary noise. The noise is removed by
a Wiener filter that depends on the state in the HMM, but
the signal is represented in the time domain, which is one
of the main limits of this method. In [6], the equalization
is performed in the feature space, but the algorithm is not
frame-synchronous. An interesting approach for remov-
ing bias, which is frame-synchronous, is presented in [5]:
the stochastic model in this case is very simple.

To overcome these limitations, the MUlti-path Stochastic
Equalization (MUSE) technique is introduced in [4]. In
this framework the speech signal is viewed in the cepstrum
domain since the cepstrum coefficients are efficient to ex-
tract information from the signal in time or frequency do-
main. In the cepstrum domain the signal is modeled by
an HMM to reflect the time and frequency variabilities of

the signal. The main problem with HMMs is the exis-
tence of unobserved data: the states sequence. In [6], this
problem is alleviated using the well-known Expectation-
Maximization algorithm, in which frames can not be pro-
cessed separately. To circumvent this difficulty, MUSE
associates an equalization function to each possible path.
The equalization function parameters are estimated, given
the path, using a Maximum Likelihood or a Maximum a
Posteriori criterion. But at time t, there are, for a fully
connected model, N t possible paths (N is the number of
states in the HMM). Therefore, it is necessary to prune or
to merge paths.

In the following section, we review the theoretical frame-
work of MUSE: how to find the parameters of the equaliza-
tion or filtering function and how to prune the paths. Then
section 3 presents a detailed application of the method to
bias removal; two formulas to compute the joint likelihood
of each path are reported. Experimental results are given
in section 4. Finally the conclusion stresses the main ad-
vantages of the MUSE technique to perform bias removal.
And from the results of the experiments, further works and
issues on that method are mentioned.

2 THEORETICAL FRAMEWORK

Let Y = y1; : : : ; yt; : : : ; yT be a sequence of noisy ob-
servations. The equalization function is defined by xt =

f�(yt) where the sequence X = x1; : : : ; xt; : : : ; xT is
distributed according to an HMM � = fA;B;�g and
� is a vector containing the function’s parameters. Let
St = st0 ; : : : ; st denote a partial state sequence and Yt =
yt0 ; : : : ; yt the partial observation sequence from time t0
up to time t.

�̂(St) = argmax
�

p(yt0 ; : : : ; ytj�; St; �) (1)

The state dependent distributions are assumed to be Gaus-
sian with mean �i and covariance matrix �i in state i (ex-
tension of the proposed method to HMMs with Gaussian
mixtures is straightforward). Then �̂(St) is the solution of
the following equation:
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where J�(yt) =
@f�

@yt
(yt) is the Jacobian matrix. Eq. 2

gives in fact a set of p scalar equations where p is the di-
mension of the vector �. Thanks to the index t0, the formu-
las show that the value of the parameters can be tracked.
Once the parameters are estimated, we need to find:

Ŝt = argmax
St

p(Y; Stj�̂(St); �)

= argmax
St

P (Stj�)
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p(ytj�̂(St); s� ; �) (3)

To reduce the complexity, Eq. 3 is replaced by :

Ŝt = argmax
St

p(Y; Stj�̂(St0); : : : ; �̂(St); �)

= argmax
St

P (Stj�)

TY
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p(y� j�̂(S� ); s� ; �) (4)

The two methods are equivalent if after a certain time, the
parameter converges; the optimal path is the same for the
two estimations.

If we use this method in a filtering scheme, the frame can
be equalized according the most likely path at time t:

x̂t = f
�̂(Ŝt)

(yt) (5)

In both cases we have to prune the paths. As in the Viterbi
algorithm, we chose to keep, for each state, the equaliza-
tion function corresponding to the most likely path leading
to this state. The number of equalization functions is thus
reduced to N . On the contrary to the Viterbi algorithm,
this algorithm is no longer optimal since the pruning and
the estimation of the parameters are nested; however, iter-
atively estimating the most likely paths and the parameters
is one of the main interesting points of this method com-
pared to stochastic matching. We could also have chosen
to keep the M most likely paths, enabling to keep more
than one path leading to a state.

3 APPLICATION TO BIAS REMOVAL

We now examine the case of a simple equalization func-
tion that performs a bias removal on the cepstrum coeffi-
cients. This function is interesting from a theoretical point
of view, since the formulas can be expressed without mak-
ing too many assumptions. In this case given the path, the
Maximum-Likelihood criterion is equivalent to the Mini-
mum Mean Square Error criterion. Removing a bias cor-
responds to an adaptation of the model means, the adapta-
tion is global but estimated separately along each path. It
is also useful from a practical point of view, since it has
been shown that a bias removal on the cepstrum coeffi-
cients eliminates the channel effect (see e.g. [3]), if the
channel effect can be represented by a linear time invariant
filter. Moreover, in [7], cepstral subtraction is interpreted
as Wiener filtering. All these reasons justify the cepstral
subtraction.

More precisely, � now represents bias b; the mismatch

function is thus f(yt) = xt � b, we have then
@f

T

b

@b
(yt) = Ip where Ip is the identity matrix of order p

and det(J�(y� )) = 1. Therefore, the resolution of Eq. 2
leads to:

b̂(St) = (
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One should notice that the same result would have been
obtained by estimating b according to a MMSE criterion:

b̂(St) = argmin
b

E[(Xt � X̂t)
T (Xt � X̂t)jSt; Yt] (7)

where X̂t = x̂t0 ; : : : ; x̂t with x̂t = yt � b.

If we define �t = �
nt log(2�)

2
+log(P (St)) where n is the

the feature vector size, the log-likelihood:
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. Since those quantities can be computed re-
cursively, we can find the optimal path at time according
to Eq. 3. Formula 8 becomes:
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But we can also find optimal paths according to the as-
sumption made in Eq. 4; in this case, the log-likelihoodcan
be computed in the following way:
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If we use formula 8, the only assumption made is that, dur-
ing the Viterbi decoding, the most likely path leading to
any state i at time t (i.e. knowing b̂(St) with st = i) is the
same as the path which would have been selected knowing
b̂(St0) with St0 containing state i at time t, for all t0 > t.
In other words, we assume that the selection done by the
Viterbi Algorithm is not modified by the future value of
the bias. Moreover, the approximated formula 10 may be
more adequate in the case of bias varying with time. The
tracking can also be done in a smooth fashion; since bias
is expressed as a function of two sums, we can introduce a
forgetting factor �ff in X1(St) and X2(St):

X1(St) = (y� � �s� )
T��1

s�
+ �ffX1(St�1) (11)

X2(St) = ��1
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+ �ffX2(St�1) (12)



where 0 � �ff � 1. The value of �ff must be chosen to
reflect the time constant of b. For example, if b models the
channel effect, �ff will be related to the amount of time
for which the channel can be considered as time invariant.
In this case, we also assume that the channel evolves in a
smooth fashion. Of course, this forgetting factor must also
be compatible with time of convergence of the proposed
algorithm.

4 EXPERIMENTS

Given the theoretical background, we can discuss experi-
ments which were carried out on two databases recorded
over both the PSN and GSM networks. Each speaker ut-
ters several words in one call. The first database consists of
French digits and the second one of a 50 word vocabulary.
Each utterance of a word will be referred as one record-
ing. The features used to perform the recognition task are
the first 8 Mel Frequency Cepstral Coefficients (MFCC),
the energy and their first and second order derivatives. The
bias subtraction is done only on the energy and the MFCC.
The recognition system works in a speaker-independent
mode. Each word is modeled by a 30-state HMM with
Gaussian distributions.

We first show how the bias converges along one call: in
Fig. 1, the bias of the most likely path for frame t is plotted
versus the frame number in the call. To keep memory of
the estimation of the bias from one utterance to another, for
a given utterance, we initialized the variables X1(S

w

1 ) and
X2(S

w

1 ) with �fuX1(Ŝ
w�1
tw�1

) and �fuX2(Ŝ
w�1
tw�1

) where

Sw1 is one of the initial paths for utterance w, Ŝw�1
tw�1

is
the optimal path for the previous utterance (w � 1) and
�fu is a forgetting factor from one utterance to another
(0 � �fu � 1). To obtain the results shown on Fig. 1,
we set �fu = 1. We can see that the bias converges along
one recording, we can consider that it is characteristic for
one call. One utterance is represented by about 100 frames
and is just enough to have the convergence, which is why
setting �fu = 0 gives poor results.

We can see that the MUSE technique can be implemented
in different ways depending on the choice of the formula
to compute the logarithm of the joint likelihood and the
choice of the forgetting factors �ff and �fu. Thus, we
have experimented with different versions of the MUSE
technique applied to bias removal on the digit database.
We present here three versions (which are among the best):
� MUSE (1): the logarithm of the joint likelihood is com-

puted according to formula 10 and �ff = �fu = 1:0.

� MUSE (2): the logarithm of the joint likelihood is com-
puted according to formula 9, �ff = 1:0 and �fu =

0:7.

� MUSE (3): the logarithm of the joint likelihood is com-
puted according to formula 10, �ff = 0:99 and �fu =

1:0.

These versions are compared to the baseline one in which
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Figure 1: Bias Convergence

f� is the identity function. We will detail the results ob-
tained on GSM for three different conditions:

� GSM1: GSM indoors and stopped car

� GSM2: GSM running car

� GSM3: GSM outdoors

PSN GSM1 GSM2 GSM3
Baseline 0.91% 3.01% 3.67% 10.45%
MUSE (1) 0.81% 2.56% 2.4%3 6.73%
MUSE (2) 0.75% 2.50% 2.59% 6.80%
MUSE (3) 0.74% 2.53% 2.39% 6.69%

Table 1: Error rates on the digit vocabulary with a PSN-
trained model

PSN GSM1 GSM2 GSM3
Baseline 1.78% 1.63% 1.35% 3.58%
MUSE (1) 1.52% 1.62% 1.39% 3.04%
MUSE (2) 1.58% 1.71% 1.39% 3.25%
MUSE (3) 1.52% 1.63% 1.47% 3.04%

Table 2: Error rates on the digit vocabulary with a GSM-
trained model

Results on the digit database in tables 1, 2 and 3 allow us
to draw initial conclusions. First the method gives poor re-
sults when training the model on the GSM-recorded data.
Secondly, under matched conditions, there is no or little
improvement since training and testing conditions are the
same. In this case, when there is improvement, it can be
explained by the fact that the MUSE technique adapts a
general model trained with various data to a specific data.
Thus, we observe that the method is efficient under mis-
matched conditions and when the speech signal model can



be considered as clean.

PSN GSM1 GSM2 GSM3
Baseline 1.23% 2.01% 2.01% 4.26%
MUSE (1) 0.99% 1.94% 1.51% 3.52%
MUSE (2) 1.07% 1.94% 1.51% 3.25%
MUSE (3) 0.98% 1.94% 1.43% 3.25%

Table 3: Error rates on the digit vocabulary with a PSN-
GSM-trained model

Other experiments showed that the two formulas for com-
puting the logarithm of the joint likelihood give barely
the same results. Introducing a forgetting factor seems to
slightly improve the results. We then trained a model with
PSN-data in which Cepstral Mean Normalization (CMN)
was performed. It should be noted that CMN is not per-
formed on testing data. Error rates for this model are re-
ported in table 4. The Error rate on PSN data is thus re-

PSN GSM1 GSM2 GSM3
Baseline 0.91% 3.01% 3.67% 10.45%
MUSE (3) 0.78% 2.38% 2.69% 6.69%

Table 4: Error rates on the digit vocabulary with a model
trained on PSN normalized data

duced but on GSM data it remains barely constant: in this
case, the signal in the MFCC domain is modeled more pre-
cisely and it is useful for PSN data but not for GSM data.
For GSM data, the PSN-trained model was precise enough
to perform bias removal. Here we can clearly see the trade-
off between the model and the mismatch function. Unfor-
tunately, learning and testing under the same conditions
still gives the best results. The results are limited by the
form of the equalization function, which is too simple.

These results were confirmed by carrying out tests on the
50-word database, with the version MUSE (3). On this
base, tests with a GSM-trained model were not performed,
since they did not give good results on the digit database
and such a model can not be considered as representative
of the speech process. On table 5, we can see that the re-
ductions of the error rate are barely the same.

PSN-trained model
PSN GSM1 GSM2 GSM3

Baseline 1.46% 4.10% 4.88% 9.19%
MUSE 1.33% 3.53% 3.54% 6.30%

PSN/GSM-trained model
Baseline 1.64% 2.14% 2.07% 3.82%
MUSE 1.43% 1.92% 1.74% 3.79%

Table 5: Error rates on the 50-word database

5 CONCLUSION

In this paper, we stressed the need of using a speech signal
model to perform equalization and filtering. We reviewed
the MUSE framework which is one way to perform this
at the frame level. A parametric function is associated to
each path in an HMM. In the case of bias, we solved the
equation that gives the parameters and we presented two
formulas for computing the joint likelihood and two ways
for tracking variation of the bias. The MUSE technique
is tested on a digit database and on a 50-word database
recorded on both PSN and GSM networks: the method
can efficiently reduce the mismatch between testing and
learning conditions (it is equivalent to an on-line adapta-
tion of the model means). These encouraging results sug-
gest the application of the proposed method to other kinds
of equalization functions (e.g. to perform spectral subtrac-
tion). A linear mismatch function is currently being tested,
this function allows one to modify both the mean and the
variance of the model. Furthermore different strategies for
pruning or merging paths should be examined.
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