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ABSTRACT

This paper describes speaker-independent speech recog-
nition experiments concerning acoustic front end process-
ing on a speech database that was recorded in 3 different
cars. We investigate different feature analysis approaches
(mel-filter bank, mel-cepstrum, perceptually linear pre-
dictive coding) and present results with noise compensa-
tion techniques based on spectral subtraction. Although
the methods employed lead to considerable error rate re-
duction the error analysis shows that low signal-to-noise
ratios are still a problem.

1 INTRODUCTION

Automatic speech recognition in a car is a difficult prob-
lem due to the adverse acoustic environmental conditions
[1], [2]. For example, the A-scored immission level of
medium-class cars increases from around 55-58 dB(A) at
50 km/h to 67-70 dB(A) at 100 km/h and further to 71-
75 dB(A) at 130 km/h. This results in signal-to-noise
ratios below 0 dB in the worst case. The signal power
of the noise is rapidly changing depending on car body,
traffic situation, speed, and in-car acoustic events such as
radio, wiper and passenger conversation. Another impor-
tant source of degradation is the ”"Lombard effect”, i.e. the
change of the speech signal generation when produced in
a noisy environment.

In order to obtain realistic data, recordings have been
conducted in running cars under various acoustic envi-
ronmental conditions (different speeds, window/radio on
or off, etc.). While earlier car speech databases were
primarily intended for investigation of speaker-dependent
recognition [3], [4], [5], [6], the database used in this pa-
per comprises 200 speakers and is suitable for speaker-
independent tests in different car environments.

In first experiments, which we describe in this paper, we
compare different acoustic front ends. The results give
some indication on the robustness of standard feature
sets, such as mel-filter bank, mel-cepstrum [7] and per-
ceptually linear predictive cepstrum [8]. Further we ex-
periment with explicit noise removal techniques such as
spectral subtraction [9], [10], SNR normalization [11] and
a combination thereof. This combination reduces the er-
ror rate by 30%, but the error rates obtained, 12% word
error rate for a quite difficult digit string recognition task,

still leave room for improvement.

2 THE CAR SPEECH DATABASE

A speech data collection has been conducted in 3 cars
comprising a total of 102 female and 102 male speak-
ers. The cars used are BMW 7501, VW Passat TDI and
Ford Escort 16V CLX. Note that the speakers were the
drivers of the cars. Each speaker spoke a set of 45 utter-
ances including isolated digits, digit strings, spellings, lo-
cation names, command words and phonetically rich sen-
tences. The text material was designed to enable training
and assessment of both isolated and continuous-speech ut-
terances, employing whole-word or sub-word approaches.
Controlled recordings in different acoustical environmen-
tal conditions were conducted, such as city and highway
rides, radio on or off, side window open or closed, rain yes
or no.

The acoustic signal was captured with two electret car
microphones mounted on the car ceiling to the left and
to the right of the driver. The transfer characteristics
of the microphone spans the range of 500 to 5000 Hz.
In the experiments only the right microphone signal was
employed.
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Figure 1: Total SNR distribution of the digits subcorpus
of car speech data base.

In our tests we investigated the digits subset of the car
speech data collection. The average SNR of this subcor-
pus is 11.6 dB with SNR values ranging from -2.3 dB to



25 dB (see fig. 1). For training we selected 87 female and
87 male speakers which had uttered 2068 digits in total.
For the recognition tests, the recordings of the remaining
15 female and 15 male speakers were used. They spoke
773 digits. Both in training and test set, use of the 3 car
types is equally distributed. There is a slight mismatch
between average training and test SNR. The average SNR
in training set is 12 dB and in the test set 10.8 dB. Note
that training and test i1s carried out in noisy conditions
(no mismatch in that sense). The very inhomogeneous
data in training and test has to be coped with.

3 ACOUSTIC PREPROCESSING
3.1 Sampling Rate

First we investigated the influence of the sampling rate
on the recognition performance. It is known from hearing
experiments with systematically high-pass and low-pass
filtered speech that the frequency range of 300 to 5000
Hz contains the perceptually most important frequencies.
Indeed, our experiments confirmed that a sampling rate
of 8 kHz (signal bandwidth 4 kHz), as is standard for
telephone speech, leads to a degradation of the recognition
performance by 5-10%, compared to a sampling rate of
11.025 kHz (signal bandwidth 5.5 kHz). In the following
we therefore used the higher sampling rate.

3.2 Short-Term Feature Analysis

The speech signal is sampled at 11025 Hz, preemphasized
and blocked into 32 ms frames by a Hamming window.
Then a 512-point FFT is performed with 16-ms shift.
Three sets of feature vectors have been compared:

o MTFB: Mel-spaced triangular filter bank. The re-
sulting power spectrum is convolved with a triangu-
lar filter kernel and then sampled at 16 frequencies
arranged roughly linearly on a mel-frequency scale.
Logarithm is then applied to the filterbank outputs
[7].

o MFCC: Mel-frequency cepstral coefficients. A dis-
crete cosine transform is applied to the MTFB co-
efficients, and the first 12 cepstral coefficients are
retained.

e PLP: Perceptually linear predictive coding. PLP
is an approximation of auditory-like spectrum by
autoregressive all-pole modeling. It takes into ac-
count critical-band spectral resolution, 40-dB equal-
loudness curve and the Steven’s intensity-loudness
power law [8]. We utilized the first 12 PLP-derived
cepstral coefficients here.

Each of the three different feature vector types was sub-
sequently subjected to the following operations:

e High-pass filtering. Each feature vector component
trajectory was filtered by a first-order high-pass filter
in order to reduce the influence of a changing acoustic
environment.

e Augmentation of the feature vector by linear regres-
sion coefficients. In our experiments it turned out
that delta coefficients computed by linear regression
performed consistently better than simple first-order
time differences. The regression coefficients were
computed over a window of 64 ms.

Each resulting feature vector consists of 24 components.

3.3 Spectral Subtraction

Spectral subtraction enhances speech signals through the
subtraction of an estimated noise spectrum [9]. This in-
creases the signal-to-noise ratio with the possible side-
effect of introducing so-called musical noise through resid-
ual peaks in the spectral floor.
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Figure 2: Spectral energy distributions of the digits sub-
corpus of car speech data base.

Let S(f, t) denote the speech spectrum corrupted by addi-
tive noise and N(f,t) be an estimate of the noise spectrum
obtained form noise-only periods of the recorded signal.
Note the dependence on the time ¢, which illustrates the
time-varying nature of the spectra. Figure 2 shows the av-
eraged spectral energy distributions separated for speech
and noise. An estimate of the uncorrupted speech sig-
nal X(f,t) is obtained by subtracting the noise spectrum
estimate from the incoming signal:

X(f,t) =max(S(f,t) — aN(f,t);bN(f,t))

The subtraction operation is slightly modified by an over-
estimation factor a for the noise spectrum and by applying
a bottom clip to avoid small and negative values in the
subsequent logarithm operation.

More sophisticated schemes have been introduced in or-
der to suppress musical noise and other deficiencies. One
major extension is the choice of a frequency- and/or time-
variant overestimation factor a(f,t) that is determined
from the current signal and noise condition [10]:

X(f, ) = max(S(f,t) —a(f,t)N(f,t);bN(f,t))

The resulting spectral subtraction method is called non-
linear spectral subtraction (NSS).



3.4 SNR Normalization

In order to make the corpus more homogenous with re-
spect to the SNR the technique of SNR normalization [11]
is used. The linear filter bank outputs X(t), where &k de-
notes the filter bank index, are masked with a masking
value My (¢):

Zi(t) = Xi(t) + M(2)

The masking value is computed as a function of the in-
stantaneous SNR. The instantaneous SNR in turn is com-
puted as the ratio between smoothed filter bank output
signals considered as speech, gk(t) , and those considered
as noise, Nk(t) :

SNRy(t) = Sk(t)/Ni(t)

Ek(t) and Nk(t) are obtained from low-pass filtering the
filter bank output signal of frames classified as speech and
noise, respectively. For example in case of Zj(t) being
classified as speech:

Se(t) = aSk(t — 1) + (1 — a) Zk(t)

with some appropriate filter factor «. If the actual
SNRy(t) is larger than a target SNR, the masking con-
stant is increased; if smaller, the masking constant is de-
creased. Thus the target SNR is tracked.

A promising approach is the combination of spectral sub-
traction and SNR normalization. In the case of a very
noisy environment the measured SNR can drop below the
target SNR even if the masking offset has been set to zero.
Then no SNR normalization is possible. If the speech is
enhanced by spectral subtraction, these high noise regions
disappear and the subsequent SNR normalization can be
more effective.

4 EXPERIMENTS
4.1 The Recognition Framework

In our experiments, we employ the Philips continuous-
speech recognition framework [12]. It is based on statis-
tical modeling of speech by left-to-right Hidden Markov
Models (HMM) with Laplacian mixture densities. A
state-independent diagonal covariance matrix is utilized.
We make use of digit whole-word models with fixed tran-
sition probabilities allowing only loop, forward, and skip
transitions. The emission probabilities are trained accord-
ing to the maximum likelihood principle by an iterative
estimation-maximization procedure.

The speech recognition is performed by Viterbi decod-
ing and time-synchronous one-pass search. In addition to
the valid recognition vocabulary, a background model is
included as a permanent rejection alternative. There are
no length restrictions on the digit strings to be recognized.

4.2 Car Speech Database

Table 1 compares the word error rates of the three dif-
ferent signal analysis approaches described in Section 3.2.
MFCC clearly performs best. The error rate for PLP is

somewhat disappointing since other sites report the ro-
bustness of PLP particularly in noisy conditions. In the
following we always assume MFCC feature analysis.

| [ MTFB | MFCC | PLP |
[WER[%] [ 198 [ 173 [ 189 ]

Table 1: Word error rates (WER) of different acoustic
front ends.

MFCC | NSS+MFCC | NSS4SNR+
MFCC

| WER [%] | 173 ] 14.7 | 12.0 |

Table 2: Word error rates (WER) for non-linear spectral
subtraction (NSS) and the combination of NSS with SNR
normalization (target SNR: 11dB).

Table 2 shows the effect of the different noise compensa-
tion techniques described in Sections 3.3 and 3.4. As can
be observed, the combination of nonlinear spectral sub-
traction and SNR normalization is advantageous, leading
to a error rate reduction by 30%.

4.3 Control Experiments on NOISEX-92

The error rates reported above are fairly high for a digit
string recognition task. Therefore we ran control experi-
ments on the NOISEX-92 database [13]. This is a small
speaker-dependent database of English digits containing
clean speech and speech with artificially added noise. We
downsampled the data to 8 kHz and ran experiments on
the data contaminated by car noise at SNRs from -6dB
to +18 dB. The above recognizer was applied without
any parameter adjustment on the isolated digits test set.
Training was performed on the isolated digits and digit
triplet noise-free training sets.

Table 3 presents the error rates and shows the dramatic
improvement for low SNR values resulting from nonlinear
spectral subtraction and SNR normalization. The results
obtained compare well with published results for SNRs
up to zero dB [11]. Therefore we concluded that the high
error rates on the car database are mainly due to the
nature of the data and the very small number of training
digits per speaker.

SNR[dB] | 6 | o | 6 [ 12 ] 18 |
MFCC 99/100 [ 94/96 [ 27/34 [ 0/0 | 0/0

NSSFSNRF
MFCC 69/83 | 4/13 | 0/0 | 0/0 | 0/0

Table 3: Speaker-dependent digit error rates (females/
males) for 100 isolated digits test set contaminated by car
noise without spectral tilt (NOISEX).

5 ERROR ANALYSIS

The error rate on the car database is fairly high compared
to other digit recognition tasks, e.g. over the telephone.
Therefore we made an analysis to gain insight as to where
the recognition problems are. It is instructive to subdivide



the recognition corpus into different SNR ranges. Table
4 shows that utterances with low SNR still pose major
problems despite the aforementioned noise compensation
techniques.

[ SNRrange [dB] [ -2.3 .. 10 [ 10 .. 15 [ > 15 |
| WER[%] | 216 [ 70 [ 57 |

Table 4:

ranges.

Subset word error rates according to SNR

| Gender | Female | Male |

Mean SNR [dB] 11.1 12.2
WER [%)] 154 | 8.2

Table 5: Subset word error rates according to gender.

Further we looked into the relative performance of the
male and female speakers. Although the average SNR of
the utterances of the female speakers was not much lower,
the error rate is almost a factor of two higher, see Table
5. The subdivision of the recognition corpus according to
car type (Table 6) and traffic situation (Table 7) are also
quite instructive.

| Car | Ford | BMW | VW |
Mean SNR [dB] | 9.8 | 11.6 | 13.6
WER [%] 180 | 92 | 7.9

Table 6: Subset word error rates according to car type.

| Traffic | City | Highway |
Mean SNR [dB] | 12.5 9.7
WER [%] 8.6 18.9

Table 7: Subset word error rates according to traffic sit-
uation.

6 SUMMARY

First results of digit recognition experiments have been re-
ported on a car speech database for speaker-independent
speech recognition in different cars. We have seen that
mel-frequency cepstral coefficients perform better than
both a log-spectral feature vector and features obtained
from PLP analysis. Nonlinear spectral subtraction in
combination with SNR normalization delivers an error
rate reduction of about 30%. Currently we achieve an
error rate of 12%. Despite the recent progress, robustness
is still a major research issue.
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