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ABSTRACT

In this paper, we present a family of maximum likelihood
(ML) techniques that aim at reducing an acoustic mis-
match between the training and testing conditions of hid-
den Markov model (HMM)-based automatic speech recog-
nition (ASR) systems. We propose a codebook-based
stochastic matching (CBSM) approach for bias removal
both at the feature level and at the model level. CBSM
associates each bias with an ensemble of HMM mixture
components that share similar acoustic characteristics. It
is integrated with hierarchical signal bias removal (HSBR)
and further extended to accommodate for N-best candi-
dates. Experimental results on connected digits, recorded
over a cellular network, shows that the proposed system
reduces both the word and string error rates by about
36% and 31%, respectively, over a baseline system not
incorporating bias removal.

1. INTRODUCTION

In this paper, we will focus on an acoustic mis-
match between the training and the testing condi-
tions of hidden Markov model (HMM)-based tele-
phone speech recognition systems. This mismatch,
which may be caused by variations in the telephone
channel and transducer equipments, will be modeled
as a time-varying additive bias; by, in the cepstral,
or log-spectral, domain. Specifically, we assume that
the cepstrum of the received signal at time ¢ is given
by

Y = ® + by, (1)

where z; is the cepstrum of the undistorted signal. A
family of compensation techniques for estimating the
bias b; is presented.

When an acoustic mismatch is known to exist, com-
pensation may be carried out in one of two ways. One
is to attempt to bring the testing data “closer” to the
acoustic space of the training environment. Lines of
research falling within this framework include spec-
tral subtraction [9, 3], signal bias removal [11], cep-
stral mean subtraction [1], and stochastic matching
[12]. Alternatively, we could transform the models
to better characterize the test data. Typical tech-
niques include Bayesian learning procedures [8], par-
allel model combination [5] and stochastic matching
[12]. An excellent survey of techniques for robust
speech recognition can be found in [7].

*This work was performed at AT&T Labs- Research during
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Both feature-based and model-based transformations
are studied in this paper. A new method is proposed,
referred to as codebook-based stochastic matching
(CBSM) which applies the expectation-maximization
(EM) algorithm [2] to compute a bias for each ensem-
ble of HMM mixture components that share similar
acoustic characteristics. CBSM enables integration of
bias removal pre-processing methods and can accom-
modate for multiple search candidates. Qur proposed
system will be evaluated on a scenario in which a set
of wireline-trained models are tested on data collected
in a wireless environment. The time-varying nature
of this problem provides a challenging testbed for the
techniques considered in this paper.

2. ML STOCHASTIC MATCHING
Consider a sequence of feature vectors Y =
{y1,...,yr}, s.t. y € RP, and a set of trained HMMs
Ax. Let the observation density for state n with M
components be defined as:

M
px(uln) = > wo N (W ptnms Com), (2)
m=1

where Wn,m 1s the mix-
ture weight and N(y; pn m, Cr m) is a Gaussian dis-
tribution with corresponding mean vector gy, ,, and
covariance matrix Cj, »,. Given an estimated bias se-

quence B = {131, e I;T}, we allow the action of bias
removal to be either a feature-space transformation
Ty =y — by, t=1,...,T, or, a model-space trans-

formation (model adaptation) Ay = Mpg(Ax), where
Mg (+) is determined by the particular method being
applied. In either case, the problem of robust speech
recognition, in the framework we have chosen, is re-
duced to that of computing the bias estimate B.
The application of the EM algorithm for estimating
the bias B has been described in the stochastic match-
ing (SM) framework proposed by Sankar and Lee [12].
Given a word (or phone) sequence W, the bias esti-
mate

B = argmaxp(Y|B, W, Ax)p(W) (3)

can be computed by maximizing the following auxil-
iary function:?

Q(B|B) = E{logp(Y|B,W,Ax)|[Y, W, B,Ax}. (4)

1Since W is fixed at this stage, the term p(W) may be
omitted.




Upon conditioning the signal (or model), we can solve
for the optimal W, 1.e., W, and reiterate this proce-
dure to further refine the bias estimate.

At this point we make no assumptions regarding the
domain in which the bias is applied (i.e., whether it is
frame-based, state-based, etc.), other than it is addi-
tive as proposed in Eqn. (1). In general, let I;(t, n,m)
be the bias estimate associated with frame t, state n,
and mixture component m. It can be shown (follow-
ing the argument of [12]) that the auxiliary function
reduces to
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where y(n,m) = p(Y,s; = n,e; = m|B,Ax) and
N is the number of states. As
function of B, the optimal bias may be obtained by
differentiating the above expression and solving for
the zeros.

3. CODEBOOK-BASED STOCHASTIC
MATCHING (CBSM)
In [6], we demonstrated that the recognition per-
formance can be enhanced when computing multi-
ple biases for each utterance. On the other hand,
we have experienced no improvement when relax-
ing the stochastic constraints by increasing the bias
resolution, such that a separate bias is assigned to
each mixture component. To provide a trade-of be-
tween increasing the bias resolution and relaxing the
stochastic constraints, we propose to associate each
bias to a group of mixture components that share sim-
ilar acoustic characteristics. The so called codebook-
based SM (CBSM) approach uses the concept of “ty-
ing” among model parameters to determine the ap-
propriate number of biases to be used.

I;(t, n,Mm) — fn m

Q(B|B) is a concave

Let {ftn m} be the set of mixture component mean
vectors for Ax, where n and m represent the state
and mixture component indices, respectively. Let
Qy,...,Qx be K classes (or codewords) that span
the entire space of the models with associated set of
centroids z1,...,zx. In the current study, the code-
book € is constructed by clustering {su, », } using the
Lloyd algorithm with a Euclidean distance. For no-
tational simplicity, we will assume that the elements
of the sets €; are the tuples which index the cor-
responding mixture component means (e.g., if py, m
is clustered to the codeword zz, then (n,m) € Q).
Since we are interested in computing a bias for each
codeword, then

tnm

where I, (+) is the indicator function for the set .
Using this notation, we may rewrite the auxiliary

function (5) as
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By differentiating this expression with respect to I;k,
and setting to zero, we may solve for the class biases,

{I;gj)}izl,D;k:LK, yielding
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The means of mixture components are updated based
on their codebook association, such that

K
/ln,m = Hnm — Zbk:[ﬂk(na m),

Y(n,m). (9)
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Figure 1: A block diagram of an ASR system incor-
porating CBSM.

A schematic characterization of CBSM is shown in
Figure 1. Following feature analysis, the first-pass
of recognition is performed using the original models
Ax along with the features Y. The resultant tran-
scription W and state segmentation are then used for
model bias removal. CBSM is applied at this point
aided by the codebook € to generate a new set of
HMMs, Ay. A second-pass through the recognizer
is then conducted using Ay and Y to generate the
recognized string.

3.1. INTEGRATED HSBR/CBSM

The basic strategy of hierarchical signal bias removal
(HSBR) is described in two steps [11]. For a given
codebook € = {u1,...,ux} of size K, the first step
includes estimating a bias for each codeword, 1
{bk}k 1- In the second step, a frame- dependent blas
b, is computed as a function of {b;}I,, and sub-
tracted from the input speech signal at each time
frame ¢, yielding the conditioned signal ;. The likeli-
hood function in HSBR is based on a weighted acous-
tic distance with respect to the codebook €2 and ne-
glects all the temporal constraints embedded in the



HMMs. The process may be iterated until some opti-
mality criterion 1s satisfied. The hierarchical aspect of
HSBR was inspired by [4] and operates by performing
the signal conditioning as described above for multi-
ple codebooks of increasing size in succession, begin-
ning with K = 1 and ending with K = K5x. The
primary advantage of HSBR is that it is a one-pass
scheme that generates a time-varying bias. Its pri-
mary disadvantage is that it is based on a memoryless
system that does not directly minimize an acoustic
mismatch between the HMM and the test signal.

CBSM, as illustrated in Figure 1, is a model-based
transformation in which bias removal is applied to
the model parameters leaving the original signal Y
unchanged. There is clearly no reason why the recog-
nition performance cannot be further enhanced by ap-
plying bias removal both at the feature level as well as
the model level. In fact, applying signal conditioning,
as 1t 1s the case in HSBR, can further help in enhanc-
ing the signal prior to recognition, thus improving
the efficiency of the recognizer and minimizing search
errors due to incomplete decoding paths. This is par-
ticularly important in situations where frequent beam
failures are occuring due to a severe acoustic mis-
match between the testing features and the training
model. In these circumstances, SM-based approaches
have little hope in improving performance since no
segmentation information would be available.

In this study, we have integrated CBSM and HSBR
for added robustness so that both feature and model
space transformations are performed simultaneously.
The procedure 1s similar to that shown in Figure 1
with the addition of the HSBR module prior to the
first pass of recognition. Therefore, rather than ap-
plying y; at each time frame in CBSM, we would sim-
ply use the conditioned signal z;.

3.2. N-BEST CBSM

Ideally, to improve recognition performance through
SM, one would like to reduce the mismatch between
the correct hypothesis and the model parameters. In
practice, however, since SM deals with the recognized
hypothesis, this level of performance can probably
never be achieved. One possibility for reducing this
problem is to provide bias removal with multiple can-
didates (i.e., alternative transcriptions) with the hope
that one of the candidates is truly the correct one. In
this study, we have incorporated multiple candidates
during bias removal using an N-best search. From
our experience with digit recognition, we have found
that for those strings that are incorrectly recognized
35-60% of the time the correct string appears in the
top four candidates.

Our approach 1s to incorporate the statistics of the
N-best candidates into the process of estimating the
bias. During the first-pass through the recognizer,
N-best candidates are generated with corresponding
state segmentations {s.}7_, I =1,...,N. The com-

puted bias for the k" codeword is
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i=1,...,D, k=1,...,K, where v/(n,m) is com-
puted for the {*? candidate. The computed biases are
then used to update all model parameters according
to Eqn. 9. This approach of using N-best candidates
with CBSM will be referred to as NB-CBSM.

4. EXPERIMENTAL RESULTS
A speaker-independent telephone-based connected
digits database was used in this study. Digit strings
ranging from one to sixteen digits in length were ex-
tracted from different field-trial collections with var-
ied environmental conditions and transducer equip-
ment. The training set consisted of 16089 digit strings
and were used for designing the recognition models.
The testing set consisted of 402 nine-digit strings
collected in a wireless telephone environment from
speakers using mostly analog handsets. The record-
ing conditions varied from call to call, ranging from

5dB to 35dB SNR.

During feature extraction, each 30 msec frame was
represented by 12 linear predictive coding (LPC)
liftered cepstral coefficients, along with a normal-
ized logarithmic energy. This feature vector was aug-
mented with its first and second order time deriva-
tives, the so called delta cepstrum/delta energy and
delta-delta cepstrum/delta-delta energy, resulting in
a vector of 39 features per frame. For recognition,
each digit was modeled by a set of left-to-right contin-
uous density HMMs which captured all possible inter-
digit coarticulation [10].2 A total of 274 context-
dependent subword models were used, trained by
ML estimation. Subword models consisted of 3 to
4 states, each having a mixture of 8 Gaussian distri-
butions. The background noise model (i.e., silence)
included asingle state with 32 Gaussian distributions.
All experiments were performed using the same train-
ing model without any type of conditioning or bias
removal and with a known length grammar.

Figure 2 illustrates the effect of varying the CBSM
codebook size (i.e., number of biases utilized) on the
recognition performance. The experiment which was
conducted with 0, 1, 2, 4, 8, 16 and 32 biases seem to
indicate that a CBSM codebook size of 8 and beyond
produces the lowest error rate. Therefore, the CBSM
codebook was fixed at 8 in all remaining experiments.
Results for integrating HSBR and CBSM are shown
in Table 1 (column 3). These results were obtained
when first processing the signal with HSBR and

?Each digit is divided into three segments, a head, a body
and a tail. A digit has one body and multiple heads and tails
depending on the preceding and following context.
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Figure 2: Variations of the word error rate as a func-
tion of the CBSM codebook size

then performing CBSM as described in Section 3.1.
They translate to a 27% and 23% reduction in the
word and string error rates, respectively, when com-
pared to those of the baseline (see column 2). Also
note that the rejection rate when applying integrated
HSBR/CBSM was down to zero. This is attributed to
applying HSBR. Column 4 presents the performance
when integrating HSBR with NB-CBSM as described
in Section 3.2. Four best candidates were chosen for
this experiment in computing the biases in Eqn. 10.
When compared to the baseline system, integrated
HSBR/NB-CBSM has resulted in 36% and 31% re-
duction in the word and string error rates, respec-
tively, with a zero rejection rate. These results are
encouraging considering that no retraining was per-
formed at any stage in our experiments.

5. CONCLUSIONS
A codebook-based stochastic matching method was
proposed in this paper. CBSM associated a separate
bias with an ensemble of mixture components that
shared similar acoustic characteristics. This method
was found to produce improvement in recognition
performance when using 8 or more codewords (or bi-
ases). Further, we integrated hierarchical signal bias
removal with an extension of CBSM that accommo-
dated for four best candidates. Without having to
retrain the original HMM system, we experienced a
reduction in the word and string error rates by 36%
and 31%, respectively, when testing on data collected
from a cellular environment. The major disadvantage
of stochastic matching based techniques is that they
require multiple passes through the recognizer. In Ta-

ble 1, we found HSBR/CBSM and HSBR/NB-CBSM

Table 1: Baseline results for digit recognition be-
fore and after processing with HSBR/CBSM and
HSBR/NB-CBSM.

Baseline | HSBR/ HSBR/
CBSM | NB-CBSM
Word Error (%) 3.3 2.4 2.1
String Error (%) 14.1 10.8 9.7
Rejection (%) 1.0 0.0 0.0
CPU (sec) 1831 3419 7063

to increase the processing time by a factor of two to
four folds. This is a major problem when trying to op-
erate a real-time service. A bias removal framework
which can accommodate for sequential processing is
clearly needed and remains a challenging problem in
speech recognition research.
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