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ABSTRACT

This paper proposes a Bayesian affine transformation of
hidden Markov model (HMM) parameters for reducing the
acoustic mismatch problem in telephone speech recognition.
Our purpose is to transform the existing HMM parameters into
its new version of specific telephone environment using affine
function so as to improve the recognition rate. The maximum a
posteriori (MAP) estimation which merges the prior statistics
into transformation is applied for estimating the transformation
parameters. Experiments demonstrate that the proposed
Bayesian affine transformation is effective for instantaneous
adaptation and supervised adaptation in telephone speech
recognition. Model transformation using MAP estimation
performs better than that using maximum-likelihood (ML)
estimation.

1. INTRODUCTION

To attain the automation of telephone services, it is necessary
to develop the robust speech recognition algorithms [1-3] over
telephone networks. A major problem of telephone speech
recognition comes from the acoustic mismatch between
training and testing environments. The mismatch sources due
to speaker, ambient noise, telephone handset, transmission
line, etc. may cause the serious degradation of recognition
performance. However, many approaches are applicable to
telephone speech recognition. One practical approach is to
transform (or adapt) a given set of speech hidden Markov
models (HMMs) using some transformation functions so that
the transformed HMM parameters are close to a new
telephone environment. Accordingly, the speaker adaptation
techniques which adapt the speaker-independent (SI) HMM
parameters to a new speaker are feasible to telephone speech
recognition. In the literature, the model transformation using
affine function y = Ax + b, such as the maximum likelihood
linear regression (MLLR) [4] and the constrained
transformation [5], has been successfully applied for speaker
adaptation. Here, x and y represent the original sampled data
and its transformed version, respectively. A and b are the
parameters for affine transformation. Also, the maximum
likelihood (ML) based stochastic matching method [6]
employed the affine function for transforming the testing
features to match with the given HMM parameters. In these

works, the affine transformation parameters were estimated
via the ML theory which no prior information was considered.

However, if a proper prior knowledge is available to
model transformation, we can use the maximum a posteriori
(MAP) principle [7] to estimate the transformation parameters.
Using the transformed HMM parameters, the recognition
performance may be further improved. In this study, we
optimally estimate the affine transformation parameters
η = ( , )A b  by maximizing the posterior density which consists

of a likelihood function and a prior density [8]. The
expectation-maximization (EM) algorithm [9] is applied for
the parameter estimation. In the experiments of telephone
speech recognition, we evaluate the proposed method by using
instantaneous adaptation, supervised adaptation and two-pass
adaptation. The performance of ML and MAP affine
transformation is compared and discussed. We also illustrate
the asymptotic property of proposed method.

2. BAYESIAN AFFINE TRANSFORMATION

Model transformation using bias function y = x + b is a simple
method for compensating the linear channel mismatch in
adverse environment. In [10-11], the bias transformation
parameter b was estimated via MAP theory and reduced the
mismatch effect in telephone speech recognition. However, the
bias transformation may be insufficient for compensating the
variabilities in telephone environments. Consequently, we are
motivated to introduce the affine function y = Ax + b for
providing a more elaborate transformation than the bias
function. Let Y y= { }t , S st= { }  and L lt= { }  denote the

observation sequence, state sequence and mixture component
sequence, respectively. Using affine transformation, the
likelihood function of state n and mixture m generating yt  is

expressed by
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where { , }, ,µµn m n mΣΣ  are the Gaussian parameters of a HMM. A

and b are random variables.
In this study, we would like to apply the MAP framework

to estimate the affine transformation parameters. Based on the



MAP theory, parameter estimation is performed by
maximizing the posterior likelihood P( )η Y , or equivalently

the product of a likelihood function P( )Y η  and a prior

density P( )η , as follows

η η η η
η η

MAP P P P= =argmax ( ) argmax ( ) ( )Y Y .         (2)

Due to the incomplete data problem, Eq. (2) is usually solved
via the EM algorithm [9]. According to EM algorithm, the
MAP estimate η MAP  is obtained by iteratively increasing the

posterior likelihood P( )η Y  of current estimate η  and

deriving the new estimate ′η  in an optimal sense. The first

step (E-step) of EM algorithm is to calculate the expectation
(or auxiliary) function given by

Q E P S L P( ) {log ( , , ) log ( ) , }′ = ′ + ′η η η η ηY Y ,          (3)

where {Y,S,L} is the set of complete data. To adjust the
contribution of the likelihood function and the prior density in
MAP estimation, we introduce a tuning factor α [11] into Eq.
(3). This tuning factor can serve as a compensating factor for
adjusting the importance of the contributions from these two
terms. Since the exact posterior density is usually unknown
and uneasy to specify, this tuning factor may provide a method
to tune the performance according to the amount of adaptation
data and the goodness of the existing HMM parameters. The
new estimate ′η  is then obtained by applying the following

weighted version of maximization step (M-step)
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It can be proved [9] that if Q Q( ) ( )′ ≥η η ηη  then

P P( ) ( )′ ≥η ηY Y . Thus, by iteratively performing E-step and

M-step, we confirm that the posterior likelihood will never
decrease. In Eq. (4), when α = 0.5, the conventional MAP
estimation is produced. When α = 1, The MAP estimation
becomes ML estimation.

Besides, we assume that the scaling matrix A and the
HMM covariance matrix ΣΣn m,  of state n and mixture m are

diagonal, i.e. A = diag a( )  and ΣΣn m n mdiag, ,( )= σ 2 . Then, the

affine transformation parameters η = ={ , , , }a b i Di i 1L  can be

independently derived for each vector component. For
simplicity, we drop the dimension index i in the following
expression. To derive the formula for a given density function,
we further assume that the parameters a and b are Gaussian

distributed, i.e. a N a a~ ( , )µ σ 2  and b N b b~ ( , )µ σ 2 . Because

of the dependent property of parameters a and b [8], the joint
prior density P a b( , )  is modeled by a joint Gaussian density

of this form
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where r is the correlation coefficient of parameters a and b.
Under these assumptions for each dimension, Eq. (4) can be
replaced by
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and γ t t tn m P s n l m a b( , ) ( , , , )= = = Y  is the posterior

probability of staying in state n and mixture m given that the
current parameters η = ( , )a b  generate Y. In Eqs. (6-7),

differentiating F a b( , )′ ′  with respect to ′b  and setting it to

zero, we can derive the optimal parameter ′b  as follows
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Unfortunately, there is no close-form solution for the optimal
parameter ′a . Thus, we apply the steepest-descent algorithm
[12] for iteratively searching the optimal parameter, i.e.
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where ρ is a positive-valued step size and l is the iteration
index. Using Eqs. (6-9), the new affine transformation
parameters ′ = ′ ′η ( , )a b  can be jointly and iteratively

calculated with this generalized EM (GEM) algorithm. In
general, this set of formulas is also referred to as the forward-
backward MAP estimate [7] which is analogy with the Baum-
Welch algorithm [13] for ML estimation.

3. SEGMENTAL MAP ESTIMATE

Actually, the Bayesian affine transformation can be also
implemented via the segmental MAP estimate [7-8]. Using this
approach, the joint posterior likelihood of parameter η and
state sequence S, P S( , )η Y , is maximized. The estimate

procedure becomes
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Starting with any estimate η( )l  and alternately maximizing

P S( , )η Y  over S and η, we guarantee that the values of

P S( , )η Y  are non-decreasing. Further, Eq. (10) can be divided

into the following two equations
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That is, the most likely state sequence S l( )  is first decoded by

the Viterbi algorithm [14]. Given the most likely state

sequence S l( ) , the new MAP estimate η ( )l +1  is then obtained

by using Eq. (12). Once again, we can apply the EM algorithm
for solving Eq. (12). Using EM algorithm, it can be shown that
the reestimation Eqs. (6-9) still hold for this segmental MAP
estimation with
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where ω n m,  is the mixture gain, K is the mixture number of a

HMM state and δ is the Kronecker delta function.

4. EXPERIMENTS

A multispeaker (37 males and 36 females) recognition
task for 250 Chinese names [8] was conducted to demonstrate
the merits of proposed method. Our speech corpora were
provided by Telecommunication Laboratories, Chunghwa
Telecom Co., Ltd., Taiwan, R.O.C. The speech signal was
sampled at 8kHz. The feature vector was characterized by 12
LPC-derived cepstral coefficients, 12 delta cepstral coefficient,
1 delta log energy and 1 delta delta log energy. In testing
session, a total of 1000 testing utterances were collected
through the telephone networks. Ten telephone handsets were
used. In training session, a speech corpus consisted of 5045
phonetically-balanced Mandarin words (spoken by 51 males
and 50 females) was prepared. This corpus was recorded in an
office room via a high-quality microphone. We use this corpus
to train the HMM parameters covering the acoustics of 408
Mandarin syllables. The tonal information of Mandarin was
not considered here. Each Mandarin syllable is composed of an
initial (or consonant) and a final (or vowel). Within a
Mandarin syllable, the initial has strong coarticulation with the
final. Hence, we employed the context-dependent subsyllable
modeling scheme in our training procedure. Each HMM state
parameter was modeled by a mixture Gaussian density with
four mixture components. In proposed method, a shared
transformation function is computed for adapting all HMM

state parameters. The Bayesian affine transformation is
implemented via the segmental MAP estimation. The speech
recognizer without model transformation is referred to the
baseline system.

In MAP estimation, the hyperparameters of the prior

density, Θ = ( , , , , )µ σ µ σa a b b r2 2 , are crucial for parameter

estimation. To adequately reflect the variabilities of model
transformation, we sampled 80 telephone utterances from a
different corpus. Each sampled utterance was uttered by a
different speaker which was excluded from those speakers in
testing database. For each utterance, we calculate the
corresponding ML estimate of affine transformation parameter
η ML  by substituting α = 1 in Eqs. (6-9). Then, the

hyperparameters Θ  are determined by taking the operations
of mean, variance and correlation coefficient over these 80 sets
of ML estimates [8].

To assess the performance of proposed method, we
perform three adaptation techniques which are instantaneous
adaptation, supervised adaptation and two-pass adaptation.
The instantaneous adaptation is a run-time unsupervised
adaptation which is performed on the unknown testing
utterance. The supervised adaptation executes the adaptation
using some known utterances which are uttered by the testing
speaker. In our experiment, only one adaptation utterance for
each testing speaker. There are totally 73 adaptation utterances
included. Each adaptation utterance contained a Chinese
name. In addition, the two-pass adaptation combines these two
techniques by first performing supervised adaptation for each
testing speaker and then further performing instantaneous
adaptation for the transformed HMM parameters according to
the unknown testing utterance. To illustrate the convergence
speed of proposed method, we plot the average log likelihood
score per frame versus the EM iteration number of Bayesian
affine transformation using supervised adaptation in Fig. 1.
We can see that the proposed method converges rapidly within
two iterations. Its asymptotic property is accordingly
established.
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Figure 1: Convergence of Bayesian affine transformation.



The recognition rates of the baseline system and cepstral
mean normalization (CMN) [15-16] are 37.3% and 79.4%,
respectively. For comparison, the results of ML affine
transformation are also included. In Table 1, we compare the
recognition rates of three adaptation techniques for ML and
MAP affine transformation under tuning factors of 0.7, 0.5 and
0.2. We can see that the proposed MAP affine transformation
performs consistently better than the ML affine transformation
for three adaptation techniques. The supervised adaptation
outperforms the instantaneous adaptation for different tuning
factors. It is because that the estimation accuracy of
transformation parameters is assured when the true
transcription of adaptation utterance is provided. Furthermore,
we also find that the recognition rates of two-pass adaptation
are higher than those of instantaneous adaptation and
supervised adaptation. It reflects the merit of two-pass
adaptation. Also, the results of α = 0.2 has better performance
than those of α = 0.5 and α = 0.7. This implies the importance
of prior information in MAP estimation. All these results are
significantly superior to the CMN method with a word
accuracy of 79.4%. From these results, we conclude that the
proposed Bayesian affine transformation has good convergence
property and recognition performance in telephone speech
recognition.

Table 1 Recognition rates (%) of three adaptation techniques
using ML and MAP affine transformation

under various tuning factors

instantaneous
adaptation

supervised
adaptation

two-pass
adaptation

ML 81.8 85.2 85.9
MAP (α=0.7) 82.4 86.1 86.7
MAP (α=0.5) 82.6 86.1 86.8
MAP (α=0.2) 82.9 86.5 87.1

5. CONCLUSION

We propose the transformation-based adaptation based on the
MAP framework and effectively apply it for telephone speech
recognition. The estimation procedures using forward-
backward MAP and segmental MAP are derived. From the
experimental results, we have the following conclusions; (1)
The proposed approach converges rapidly. (2) The
performance of MAP affine transformation is better than that
of ML affine transformation. (3) The proposed approach can
be employed in instantaneous adaptation, supervised
adaptation and two-pass adaptation. (4) The proposed method
is superior to CMN method.
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