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ABSTRACT

This paper proposes a Bayesian affine transformation of
hidden Markov model (HMM) parametefer reducing the
acoustic mismatch problem in telephone speech recognition.
Our purpose is to transform the existing HMM parameters into
its new version of specific telephone environment using affine
function so as to improve the recognition rate. The maximum
posteriori (MAP) estimation which mergake prior statistics
into transformation is applied for estimating the transformation
parameters. Experiments demonstrate that pheposed
Bayesian affine transformation is effective for instantaneous

works, the affine transformation parameters were estimated
via the ML theory which no prior information was considered.
However, if a proper prior knowledge is available to
model transformation, we can ug maximuma posteriori
(MAP) principle [7] to estimate the transformation parameters.
Using the transformed HMM parameters, thecognition
performancemay be further improved. Inthis study, we
optimally estimate the affine transformation parameters
n = (A,b) by maximizingthe posterior densitwhich consists
of a likelihood function and a prior density [8]. The
expectation-maximization (EM) algorithi®] is applied for
the parameter estimation. In the experiments of telephone

adaptation and supervised adaptation in telephone speechspeech recognition, we evaluale proposed method by using

recognition. Model transformation using MAP estimation
performs better than that usingnaximume-likelihood (ML)
estimation.

1. INTRODUCTION

To attain the automation of telephone services, iteisessary

to developthe robust speeatecognition algorithms [1-3pver
telephone networks. A major problem of telephone speech
recognition comes fromthe acoustic mismatch between

instantaneous adaptation, supervised adaptation and two-pass
adaptation. The performance of ML anWAP affine
transformation is compared and discussed. We iliisirate

the asymptotic property of proposed method.

2. BAYESIAN AFFINE TRANSFORMATION

Model transformation using bias functigr= x + b is a simple
method for compensatinghe linear channel mismatch in
adverse environment. In [10-11jhe bias transformation
parameteb was estimated viMAP theoryand reduced the

training and testing environments. The mismatch sources duemismatch effect in telephone speech recognition. However, the
to speaker, ambient noise, telephone handset, transmissionbias transformatiomay beinsufficient for compensating the

line, etc. may cause the serious degradation re€ognition
performance. Howevenmnany approachesare applicable to

variabilities in telephone environments. Consequently, we are
motivated to introduce the affininctiony = Ax + b for

telephone speech recognition. One practical approach is toproviding a more elaborate transformatidghan the bias

transform (or adapt) @iven set of speech hidderMarkov
models (HMMs) usingsome transformation functions #oat
the transformed HMM parameters amose to a hew
telephone environmen#ccordingly, the speaker adaptation
techniques which adaphe speaker-independe($l) HMM
parameters to a new speaker are feasible to telepprexh
recognition. Inthe literature, thamodel transformation using
affine functiony = Ax + b, such as thenaximum likelihood
linear regression (MLLR) [4] and the constrained
transformation [5], has beesuccessfullyapplied for speaker
adaptation. Herex andy represent the original sampled data
and itstransformed version, respectivel.. and b are the
parametersfor affine transformation. Alsothe maximum
likelihood (ML) based stochastic matching method
employed the affine function for transformingthe testing
features to match witthe given HMM parameters. Ithese

(6]

function. Let Y ={y} , S={g¢ and L={l} denote the

observation sequencstate sequence and mixtuwemponent
sequence, respectively. Using affine transformation,
likelihood function ofstaten and mixturem generatingy, is

the
expressed by
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where {2} are the Gaussian parameters of a HMM.

andb are random variables.
In this study, we wouldike to applythe MAP framework
to estimate the affine transformation parameters. Based on the



MAP theory, parameter estimation is performed by
maximizing the posterior IikelihoodP(r]|Y), or equivalently

the product of a likelihood functionP(Y|n) and a prior
density P(n) , as follows

Nwap = argmaxP qY )= argma® Y(n Pr( ) 2
n n

Due to the incomplete data problem, E2). is usually solved
via the EM algorithm[9]. According to EMalgorithm, the
MAP estimaten ., iS Obtained by iteratively increasing the

posterior likelihood P(r]|Y) of current estimaten and

deriving the new estimatg’ in an optimal sense. The first

step (E-step) of EM algorithm is to calculate the expectation
(or auxiliary) function given by

Q('|n) = Eflog RY, S In’) +log RN")|Y.n}, 3)
where {Y,SL} is the set ofcompletedata. To adjust the
contribution of the likelihoodunction andthe prior density in
MAP estimation, we introduce a tuning factof11] into Eq.
(3). This tuningfactor can serve as a compensating factor for
adjusting the importance of the contributidn@m these two
terms. Since the exact posterior density is usuatlignown
anduneasy to specifythis tuningfactormay provide a method
to tune theperformance according the amount of adaptation
data and thgoodness ofhe existing HMM parameters. The
new estimaten’ is then obtained bwpplying the following
weighted version of maximization step (M-step)

n' =argmax §'jn )=
A

argmaxE f logP (Y ,S,In" }+ (~a )logPq' Y n}. (4)
.

It can be proved [9]that if Q(n’'|n)=Qnn) then

P('|Y) = P(|Y) . Thus, by iteratively performing E-step and

M-step, weconfirm that the posterior likelihood wilhever
decrease. In Eq. (4), whem = 0.5, theconventional MAP
estimation is produced. Whan = 1, The MAP estimation
becomes ML estimation.

Besides, we assume that thealing matrixA and the
HMM covariancematrix ., of staten and mixturem are

diagonal,i.e. A =diag(a) and X, = diag(ofm) . Then, the
affine transformation parameters={a, b, i=1--- O} can be

independently derived for each vector component. For

simplicity, we drop the dimension indexin the following
expression. To derive tifermula for a given density function,
we further assume that the parametem@ndb are Gaussian
distributed, i.e.a~ N(u,,02) and b~ N(u,,02). Because
of the dependentroperty of parameters andb [8], the joint
prior density P(a, b) is modeled by a joint Gaussian density
of this form

1
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wherer is the correlatiorcoefficient of parametera andb.
Under these assumptiofier each dimensionEg. (4) can be
replaced by

n' ={a, b} =argmin F(a, ), (6)
{a’,b}
where F(a’,b')
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and y,(nm=Rs$=nJ=1¥,ab is the posterior

probability of staying instaten and mixturem giventhat the
current parametersy =(a,b) generateY. In Egs. (6-7),

differentiating F(a’,b’) with respect tob’ and setting it to
zero, we can derive the optimal paramdieras follows
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Unfortunately, there is nolose-form solution fothe optimal
parametera’ . Thus, we applyhe steepest-descealgorithm
[12] for iteratively searching the optimal parameter, i.e.

dF(a, b)
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wherep is a positive-valued step size ahds the iteration
index. Using Eqgs. (6-9), the new affineansformation
parameters n' =(a',b’) can be jointly and iteratively
calculated with this generalized EM (GEM) algorithm.
general, this set dbrmulas is also referred to #se forward-
backward MAP estimatfy] which is analogywith the Baum-
Welch algorithm [13] for ML estimation.

In

3. SEGMENTAL MAP ESTIMATE

Actually, the Bayesian affine transformation can be also
implemented via theegmental MAP estimafé-8]. Usingthis
approach, the joint posterior likelihood of paramateand
state sequenc& P(n,3Y), is maximized. The estimate

procedure becomes



Nuap = argmax rgaP gy F
n

arg max rga)P Y S Pd) (10)
n

Starting withany estimaten® and alternatelymaximizing

P(n.8Y) over S andn, we guarantee that the values of

state parameters. Th8ayesian affine transformation is
implemented via the segmentdiAP estimation. The speech
recognizer without model transformation is referred to the
baseline system.

In MAP estimation, the hyperparameters of the prior

density, © =(1,,02,1,,0%,r), are crucial for parameter

estimation. To adequately reflect the variabilities nuddel
transformation, we sampled 80 telephone utterarfices a

P(n,SY) are non-decreasing. Further, Eq. (10) can be divided different corpus. Each sampled utterance was uttered by a

into the following two equations

- )
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n"? =argmak ¥ S"|n PG ). (12)
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That is, themost likelystate sequenc&® is first decoded by
the Viterbi algorithm [14]. Given the most likely state

sequences”, the newMAP estimaten !*? is then obtained
by using Eq. (12). Once again, we can apby EMalgorithm

for solving Eq. (12). Using EM algorithm, it can be shawat

the reestimation Eqgs. (6-9) stfibld for this segmental MAP
estimation with

wn,mN(yt; Ky m,O'zn mr])
ZkK=1wn,kN(yt; MmO amn)

ye(nm =8(g" - n (13)

where w,, ., is the mixture gainK is the mixture number of a
HMM state and is the Kronecker delta function.

4. EXPERIMENTS

A multispeaker (37 males and 36 femalesgognition

taskfor 250 Chinese namg8] was conducted to demonstrate

different speaker which was excludigdm thosespeakers in
testing database. For each utterance, we calculate the
corresponding ML estimate of affine transformation parameter
Nue by substitutinga = 1 in Egs. (6-9). Then, the
hyperparameter® are determined by taking thaperations

of mean, variance and correlation coefficient over thesse89

of ML estimates [8].

To assess theerformance of proposed method, we
performthree adaptation techniques whiate instantaneous
adaptation, supervised adaptation and two-pass adaptation.
The instantaneous adaptation is a run-time unsupervised
adaptation which is performed othe unknown testing
utterance. The supervised adaptation executes the adaptation
using some known utterances white uttered by the testing
speaker. In our experimeranly one adaptation utterance for
each testing speaker. There are totally 73 adaptation utterances
included. Each adaptation utterance contained a Chinese
name. In additionthe two-pass adaptation combingse two
techniques by firsperforming supervised adaptation for each
testing speaker and then furthperforming instantaneous
adaptation fotthe transformed HMM parameteascording to
the unknown testing utterance. Tihustrate theconvergence
speed of proposed method, we gloe average log likelihood
scoreper frame versus the EM iteration numberBafyesian
affine transformation using supervised adaptation in Fig. 1.
We cansee that th@roposed method converges rapidighin

the merits ofproposed method. Our speech corpora were tWO iterations. Its asymptotic property is accordingly
provided by Telecommunication Laboratories, Chunghwa e€stablished.

Telecom Co., Ltd., Taiwan, R.O.C. The speech signal was
sampled at 8kHz. The feature vector was characterized by 12

LPC-derived cepstral coefficients, 12 delta cepswefficient,
1 deltalog energyand 1 delta deltdog energy. Intesting

session, a total of 1000 testing utterances were collected
throughthe telephone networks. Ten telephone handsets were
used. In training session, a speadhpus consisted of 5045
phonetically-balanced Mandarin words (spoken by 51 males
and 50 females) was prepared. This corpus was recorded in an

office roomvia a high-quality microphone. Wese thiscorpus
to train the HMM parametersovering the acoustics of 408

Mandarin syllables. The tonal information of Mandarin was
not considered here. Each Mandarin syllable is composed of an
initial (or consonant) and a final (or vowel). Within a
Mandarin syllable, the initial has strong coarticulation with the
final. Hence, weemployedthe context-dependent subsyllable

modeling scheme in our training procedure. Each Hbtite

parameter was modeled by a mixture Gaussian density with
four mixture components. In proposed method, a shared

transformation function is computed for adaptiadg HMM

log-likelihood/frame

6 8 10 12 14

iteration number
Figure 1: Convergence of Bayesian affine transformation.



The recognitiorrates of the baselingystemand cepstral
mean normalization (CMN) [15-164re 37.3% and 79.4%,
respectively. For comparisonthe results of ML affine
transformation are also included. In Table 1, ceenpare the
recognitionrates of three adaptation techniqdes ML and
MAP affine transformation under tuning factors of 0.7, 0.5 and
0.2. Wecansee that theroposed MAP affine transformation
performs consistentletter than the ML affineransformation
for three adaptation techniques. The supervised adaptation
outperformsthe instantaneous adaptatitor different tuning
factors. It is becausehat the estimationaccuracy of
transformation parameters is assured when the true
transcription of adaptation utterance is provided. Furthermore, [4]
we also find that theecognitionrates oftwo-pass adaptation
are higher than those of instantaneous adaptation and
supervised adaptation. It reflects the merit twfo-pass
adaptation. Alsothe results oft = 0.2 has bettgperformance
than those oft = 0.5 andx = 0.7. This implies th@nportance
of prior information in MAPestimation. All these results are
significantly superior tothe CMN method with aword
accuracy 0f79.4%. From these results, weoncludethat the
proposed Bayesian affine transformation §asd convergence
property and recognition performance in telephone speech
recognition.

[1]

(2]

3]

5]

[6]

[7]

Table 1 Recognition rates (%) of three adaptation techniques
using ML and MAP affine transformation
under various tuning factors

(8]

instantaneous supervised two-pass
adaptation | adaptation | adaptation
ML 81.8 85.2 85.9 [9]
MAP (a=0.7) 82.4 86.1 86.7
MAP (0=0.5) 82.6 86.1 86.8
MAP (a=0.2) 82.9 86.5 87.1

5. CONCLUSION

We proposehe transformation-based adaptation based on the
MAP frameworkand effectively apply it for telephone speech
recognition. The estimation procedures usirigrward-
backward MAPand segmentaMAP are derived.From the
experimental results, weave the following conclusions; (1)
The proposed approachconverges rapidly. (2) The
performance of MAP affine transformationbetter than that
of ML affine transformation(3) The proposed approach can
be employed in instantaneous adaptation, supervised
adaptation and two-pass adaptati@¥). The proposed method
is superior to CMN method.
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