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ABSTRACT

The method of spectral subtraction has become very
popular in speech enhancement. It is performed by
modifying the spectral amplitudes of the disturbed
signal. The spectral analysis of the signal is usually
done by a Discrete Fourier Transformation (DFT).
We propose a spectral transformation with
nonuniform bandwidth to take into account the char-
acteristics of the human ear. The spectral analysis
and synthesis is performed by a non-critically deci-
mated discrete wavelet transform. Critical subsam-
pling is not performed to avoid errors due to aliasing.
A gignificant drawback of spectral-subtraction
methods are tonal residual noises in speech pauses
with unnatural sound. The application of the pro-
posed wavelet transform results in reduced residual
noise with subjectively more comfortable sound.

1. INTRODUCTION

This publication deals with the enhancement of
speech signals. A popular method to reduce addi-
tive noise of speech signals is spectral subtraction [1].
The basic idea of spectral subtraction is to estimate
the magnitude of the noise-free spectrum by subtract-
ing a mean magnitude of the noise spectrum from the
disturbed spectrum.

In practice the required spectral analysis and syn-
thesis is usually performed by a DFT and its inverse
[1] or by analysis and synthesis filterbanks, for ex-
ample polyphase filterbanks [2]. All systems have in
common that they perform a uniformly spaced divi-
sion of the frequency domain. The spectral analysis
of the human ear can be modeled as a nonuniform
filterbank with bark-scaled frequency bands [6]. This
model was successfully applied to, e.g., speech recog-
nition and coding systems.

We propose a non-critically decimated discrete
wavelet filterbank in conjunction with spectral-
subtraction methods. The wavelet filterbank is de-
signed to approximate the frequency analysis of the
human ear.

To avoid signal distortion due to spectral alias by
modifying the spectral magnitude of the noisy signal,
the decimation in each frequency band remains above

the critical decimation by a factor of 2. The wavelet
filterbank is based on a scaled Morlet wavelet and
additional subfilters within each octave.

The paper is organized as follows:

First a brief review of speech enhancement using
spectral subtraction is given. Then the analysis and
synthesis stages of the wavelet filterbank are de-
scribed in detail. In the next chapter experimental
results are presented and a discussion of the results
is given.

2. SPECTRAL SUBTRACTION

The spectral-subtraction method can be applied to
noisy speech signals with additive noise

z(k) = s(k) + n(k) , 1)

where z(k) denotes the noisy signal, s(k) the speech
signal and n(k) the noise. The Fourier transformation
is denoted as

Flal)} = X(@%) = X - =@ . (@)

The basic idea is to subtract an estimated mean
spectral magnitude of noise |N(e/?)| from the spec-
tral magnitude | X (e’®?)| of the noisy speech signal.
An estimation of the noise-free speech spectrum re-
sults as

8(e) = (max (|X (/)] - [N(&1)],0) ) - e3#=(®
3)

Note that only the magnitude of X (¢/?) is modified,
but the phase of the disturbed speech signal is pre-
served. The human ear is relatively insensitive to dis-
turbances of the phase, so the exclusive modification
of the magnitude is justified [2].

Negative values of | X (e7?)| — | N (e7?)| are estima-
tion errors and therefore forced to zero. The mean
magnitude of the noise spectrum is assumed to be
estimated e.g. during speech pauses. This requires
a separate speech-pause detector. An alternative is
spectral-minima tracking [3].

Equation (3) may be interpreted in terms of spec-
tral weighting of the noisy speech signal. This inter-



pretation leads to

S(e’?) = H(e") - X (/) (4)
where
j X (e7%)] — N (e79))]
H(e*Y) max ( X (&) , 0)
N (i)
= mu(l—%,O) . (5)

The spectral weights H(e/?) are signal dependent
and real. In practical realizations equation (4) has
to be dicretized. This may be done by various kinds
of spectral transformations or filterbanks.

Unfortunately residual tonal noises with unnatu-
ral sound remains especially in speech pauses. This
is a major drawback of the spectral-subtraction
method. More sophisticated spectral-subtracting
rules were developed in the past [5, 4] to suppress
the tonal noises.

Our experiments were developed with the basic
system described above due to BOLL [1] and the sub-
traction rule due to EPHRAIM AND MALAH [5].

3. WAVELET TRANSFORM

The continuous wavelet transform (CWT) of a signal
z(t) is defined as

W;ﬁ(b,a):|a|—%/+°°x(t)¢*(t‘b)dt . (6)

— a

All basis functions ¥y,(t) = |a|~%¢ (£2) are ob-
tained by dilation or contraction from one single pro-
totype wavelet 9(t). Large values of a cause v 4(t)
to become a lower-frequency and dilated version of
¥(t). For small a values, the function 4 (¢) becomes
a contracted version of #(t) with higher frequency
components. As a consequence, the resolution in the
time-frequency plane is not constant. For high fre-
quencies the resolution of the wavelet transform is
sharp in time but poor in frequency, while for small
frequencies the resolution is sharp in frequency and
poor in time.

In the frequency domain the wavelet transform
can be interpreted as a filterbank with bandpasses
whose bandwidths Aw; increase monotonously with
the center frequency wyp,. It can be shown that the
relative bandwidth @ = ﬁ;’f is independent from
the parameter a, so the wavelet-transform is called
"constant-Q’ analysis. This is very similar to the fre-
quency analysis of the human ear.

The digital realization of (6) requires the dis-
cretization of the parameters ¢ and b. Usually the
parameter a and b are chosen to be on a dyadic grid.
Then a is a power of 2 and b is dependent on a, so

that a,, = 2™, byn = amnT, where m,n € Z. On
this basis the wavelet transform in application to a
discrete signal z(k) becomes

wy(2™n,2™) =27% ) z(k)yt 27"k —n)
k
(7)

and realizes an octave analysis with different sam-
pling rates in each octave.

To increase the resolution in frequency by a factor
M, it is possible to use M dyadic wavelet analyses
(voicing) each with the scaled prototype wavelet

Wi(k) =2 P2 Hk), j=0,..,0M-1) . (8)

The non-critically decimated wavelet filterbank is
based on the A-Trous algorithm [7] and is one realiza-
tion of (7). It can be shown that the filterbank struc-
ture in figure 1 approximates the discrete wavelet

G(Z) w(n,1)
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Figure 1: realization of the A-Trous algorithm.

transform of (7) with non critical subsampling. G(z)
is the Z-transform of the prototype wavelet and F'(Z)
is the Z-transform of an interpolation filter. While
using the resolution of identity for multirate sys-
tems the decimation of 2! in the I-th octave can be
done more effectly and leads to the realized wavelet-
filterbank structure shown in figure 2.

The bandpass filters g*(n) , i = 0, .., (M—1), are the
prototype wavelets for each dyadic wavelet analysis.
The decimation of 2! in the I-th octave as shown in
figure 2 allows the use of the same filter within each
octave. The function of the lowpass filter f,(n) may
be interpreted as an antialiasing-filter.

The synthesis filterbank interpolates the sub-
bands to the next higher sampling rate and adds the
result to the output of the next octave, taking care
of the correct delay as produced in the analysis part.

4. EXPERIMENTS

The experiments were carried out using the above de-
scribed wavelet filterbank with 7 octaves (p==6 in fig-
ure 2). We chose two different values for the number
of voices, to investigate the influence of the number
of subbands on the enhancement system. The choice
of 10 voices per octave (M =10) leads to 70 channels



Figure 2: structure of the realized wavelet filterbank.

and 35 subbands results from applying 5 voices per
octave (M =5).

The prototype filter is the sampled complex Mor-
let wavelet

X 5242

P(t) = elote” (9)

[8] with 101 coefficients for the wavelet-filterbank

with 70 subbands and 49 coeflicients for the filter-

bank with 35 subbands. This choice yields a sufficient

attenuation to the neighboring subband. The inter-

polation was implemented by FIR filters of length 71.

The resulting frequency resolutions of the filterbanks

are shown in figure 3. For the sake of clearness the
plots are only shown for the first three octaves.

We examined the enhancement system with the
spectral-subtracting rule due to BOLL [1] and the sub-
traction rule due to EPHRAIM AND MALAH [5]. The
basic difference between uniform and non-uniform
spectral analysis is well understandable applying the
wavelet filterbanks to the basic spectral-subtraction
system of BOLL, where a high amount of residual
noises occurs. On the other hand we investigate, if
the non-uniform spectral analysis gives improvements
to more sophisticated spectral-subtraction rules with
less residual noises.

In figure 4 four spectrograms are plotted. The
results of the spectral-subtraction rule due to BOLL
with different filterbanks are shown. The speech
signal was recorded in a running car; so the noise
was produced by the engine, the wheels and wind-
turbulences. The sampling frequency was 11.025
kHz.

The frequency representation of the noisy speech
signal is visualized in the first spectrogram. Most of
the noise energy is located in the low-frequency area.

The data of the second spectrogram were pro-
duced using a polyphase filterbank with 256 chan-

5 voices per octave
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Figure 3: frequency resolutions for the first three oc-
taves.

nels. The length of the prototype filter was chosen
to 1024 samples and the decimation was performed
with a factor 2 above critical subsampling. Especially
in speech pauses randomly spaced spectral peaks re-
main, which produce tonal residual noises.

The third and fourth spectrogram show the re-
sults using wavelet filterbanks with 70 and 35 chan-
nels as spectral transformation.

The main differences appear in the structure of
the tonal residuals in speech pauses. The spectral
peaks in the second spectrogram are of uniform band-
widths, while the bandwidths of the spectral peaks in
the third and fourth spectrogram increase to higher
frequency but the duration in time decreases. Note
that the amount of residual spectral peaks in higher
frequency areas is significantly reduced using the
wayvelet filterbanks. The usage of fewer channels leads
to fewer residual noises towards higher frequencies.
But reducing the number of channels below 35 be-
comes problematic, because the filterbank is not able
to separate the areas between the pitch frequencies.
No noise reduction in these areas can be performed.

In informal listening tests the residual noise pro-
duced by the wavelet-based enhancement systems
was judged to be more pleasant. The 70 channel
wavelet filterbank was preferred to the 35 channel
filterbank, because the amount of noise reduction to
very low frequencies was higher.

The application of the spectral-subtraction rule
of EPHRAIM AND MALAH leads to equivalent subjec-



tive results. Because the amount of residual noises is
lower then in the case of BOLL’s procedure, the ad-
vantages of the non-uniform spectral analysis can be
used to adjust the parameters to achieve less distor-
tion of the speech signal.

5. CONCLUSION

A wavelet-based spectral-subtraction system is pro-
posed. Informal listening tests showed a subjective
preference of filterbanks with nonuniform bandwidths
for spectral-subtraction systems. In experimental in-
vestigations a choice of 70 channels for the proposed
wavelet filterbank was found to be appropriate.
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Figure 4: comparison of spectrograms.



