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ABSTRACT

This paper deals with a noisy speech
enhancement technique based on the fusion of
auditory and visual information. We first present
the global structure of the system, and then we
focus on the tool we used to melt both sources of
information. The whole noise reduction system
is implemented in the context of vowel
transitions corrupted with white noise. A
complete evaluation of the system in this context
is presented, including distance measures,
gaussian classification scores, and a perceptive
test. The results are very promising.

1. INTRODUCTION

It has been shown that there exists a
complementarity between the auditory and visual
modalities of speech [2]. Thus, visual cues can
compensate to a certain extent the deficiency of
the auditory ones [2][3]. This property is
already exploited by bimodal speech recognition
systems: their performances are improved by the
use of visual data, especially in noisy
environments [4].

In a previous paper [1], we presented a
new system dedicated to telecommunications or
man-machine communication, aiming at
enhancing noisy speech with the help of the
image of the speaker’s face. The purpose was to
estimate, from the speaker’s lips characteristics, a
model of the audio signal, and to filter the noisy

audio signal with the estimated model. The
results obtained on stationary vowels were very
encouraging. But the weak point was that we
tried to estimate a complete audio information
from the video one, whereas the lip information
stays very partial.

In this paper, a new structure for our
system is proposed: as an attempt to better
exploit the bimodal complementarity, the
enhanced auditory information is now estimated
from both the noisy auditory and the visual
channels. We present first the global structure of
the system. Then we focus on the bimodal
integration process. Finally, we present some
results obtained for the enhancement of vocalic
transitions corrupted with additive white noise.

2. STRUCTURE DESIGN

The new system is essentially based on the
linear prediction model [5] (fig. 1). First, an LPC
analysis is performed on the noisy signal. We
obtain spectral parameters and the noisy speech
excitation is extracted by filtering through the
inverse LPC filter An(z). Then, the noisy spectral
parameters are combined with the video ones so
as to obtain estimated "cleaned" spectral
parameters (see section 3). Finally, enhanced
speech is synthesised by filtering the excitation
through the LPC filter 1/Ae(z) derived from the
"cleaned" spectral parameters. The whole
processing is performed frame-by-frame in the
perspective of a continuous speech application.
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Figure 1 – Structure of the noisy speech enhancement system



3. ESTIMATION OF THE "CLEANED"
AUDIO PARAMETERS

The main problem is hence to estimate
"cleaned" audio parameters from noisy ones and
video ones. We use a linear regression method
because of its simplicity and efficiency
concerning our problem [1]. The principle is the
following. Consider an audio-visual vector as the
concatenation of video parameters and audio
parameters. Two matrices are built. The first one,
called MAV, concatenates the audio-visual vectors
issued from a learning corpus where the audio
signals are corrupted with noise. The second one,
called MA, concatenates the corresponding
vectors of audio coefficients only, issued from
the same learning corpus, but in the clean
condition. Then we calculate the matrix M that
realizes the linear regression between MAV and
MA. Finally, for every new audio-visual noisy
vector VAV, the product between VAV and M
gives an estimated "cleaned" audio vector VA.

4. EXPERIMENTATION

4.1. Video and audio inputs

The ICP face processing system [6] allows
to automatically extract three basic parameters of
the labial contours, namely interolabial width
(A), height (B) and area (S). These video
parameters are extracted every 20 ms.

The audio information consists in
parameters characterising the LPC polynomials.
It has been shown that the best performances of
the system were obtained with a 50-coefficient
spectral representation consisting of the
logarithmic values of the 1/A(z) 20-order filter
amplitude taken for 50 equally spaced values on
the upper-half unit circle. The audio signals are
sampled at 16 KHz and the coefficients are
calculated on 512 samples (32 ms, which
involves an audio window overlap of 12 ms to
synchronise with the 20 ms video period).

4.2. The corpus

For stationary vowels, our previous work
has given very satisfactory results [1]. In this new
implementation, vocalic transitions V1V2V1
uttered by one speaker are studied. V1 and V2
are within [a, i, y, u]. One item of each of the 16
possible stimuli is used during the learning phase
(calculation of the matricial associator), and
another one is reserved for the tests described in
section 5. With a video acquisition period of 20
ms, we obtain an amount of about 350
audiovisual vectors for a series of 16 stimuli
(about 24 frames by stimuli).

4.3. Experimental protocol

We consider only the case of an additive
white noise. The results discussed here are
obtained with the use of two different matricial
associators M: one is dedicaced to enhance
stimuli with "strong" SNRs. M is trained with
stimuli frames presented at SNRs of ∞, 18, 12, 6
and 0 dB. The other one is dedicaced to enhance
stimuli with "small" SNRs. M is trained with
stimuli frames presented at SNRs of 6, 0, -6, -12,
and -18 dB. During the enhancement process,
each frame is submitted to a linear discriminant
analysis in order to decide its categorisation in
the strong or small noisy condition so that we
can choose the corresponding associator. It has
been shown that this linear discriminant analysis
could separate stimuli with SNR lower than 0 dB
or higher than 6 dB with less than 1% errors,
while the two associators provide quite similar
responses for SNRs between 0 and 6 dB.

4.4. Filtering process

To obtain the filter 1/Ae(z) from the
"cleaned" spectral parameters, we use an inverse
FFT, and apply a 20-order Levinson procedure
on the resulting estimated autocorrelation
coefficients [5]. During the enhancement phase,
both trapezoidal windowing and buffering are
applied to the filter junctions to ensure
continuity of the enhanced signal.

5. EXPERIMENTAL RESULTS

After an informal qualitative evaluation of
the system, three quantitative evaluation
procedures are defined: distances measures,
gaussian classification test, and perceptive tests.
Those evaluations were made with additive white
noise for 8 different SNRs (∞, 18, 12, 0, -6, -12,
-18 dB).

5.1. Qualitative evaluation

Informal listening tests have revealed a
good behaviour of the system. For weak noises,
the enhancement does not degrade much the
quality of the signals. For medium noises, the
effects are more important and useful: the
message is easier to understand even if it
sometimes sounds surprising (the filtering of the
noisy excitation leads to heavy whispered
vowels). For highly degrading levels of noise
(loss of intelligibility), the system allows to
recover the intelligibility of most of the stimuli
(almost any [a] or [i], thanks to their distinctive
labial shape, with more ambiguity between [u]
and [y]).



5.2. Distance measures

The mean Itakura distance [2] has been
used to measure the difference between the
enhanced and clean spectra. Figure 2 displays
the distance calculated on the complete test
corpus (16 stimuli) for three conditions: AV
stands for the use of audio-visual information, A
for audio information only (audio vectors
presented at the learning and enhancement
phases instead of audio-visual ones), and V for
visual information only (visual vectors presented
at the learning and enhancement phases instead
of audio-visual ones). It has been verified that
rather small distances are altogether obtained
compared to those between noisy and clean
spectra. Hence the procedure does produce a
significant enhancement. It can be seen that AV
always performs better than A, and almost always
better than V (near until -18 dB of SNR). This
confirms the interest of visual cues, and the good
complementarity between the two modalities.
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Figure 2 – Mean Itakura distance between enhanced
and clean spectra of the test corpus

5.3. Gaussian classification

To evaluate the system in a recognition
task, a gaussian classification test has been
realised on the four vowels of our stimuli. The
items used in this test are two selected frames
near each vocalic nuclei of each stimuli. This
ensures the absence of coarticulation effects and
easy labelling. The video signal is assumed to be
quite stable in these selected zones. We obtain 96
items for each level of noise (2 selected frames, 3
vowels per stimuli, 16 stimuli), that is to say 24
per vowel. Since the number of data is small
compared to the number of parameters, we
reduce the number of audio parameters from 50
to 5 by means of a principal componants
analysis (PCA). In the results presented in figure
3, both the PCA and the gaussian classifier
parameters are determined with learning data
presented at 3 levels of noise (∞, 18, 12 dB).

Figure 3 compares the correct classification
scores for three conditions: A stands for the use
of the noisy audio information only (5 audio
parameters) during the learning phase of the
classifier. In this condition we have the
comparison between Anoisy which stands for the
use of the noisy test corpus, and Aenhanced which
stands for the use of the same test corpus after
enhancement. In comparison, the AV scores
correspond to an audio-visual recogniser applied
to a vector combining the video and audio
inputs, hence 5 audio and 3 video parameters.
Note that all scores are normalised between 0
and 100%, with 0% corresponding to a random
choice and 100% to perfect recognition.
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Figure 3 – Gaussian classification test scores

The difference of the scores in the noisy and
enhanced conditions confirms the efficiency of
the system. Moreover the audio enhanced
condition competes well with the audiovisual
classification near until SNR = -12 dB.

5.4. Perceptive test

The final evaluation of the system is done
with perceptive tests. 17 subjects were asked to
identify all stimuli randomly presented in noisy
and enhanced condition and for 8 levels of
noise. The V1V2V1 stimuli were manually
segmented into V1V2 and V2V1 in order to
present V1 only once at each iteration. So, for
each point of the identification scores curves in
figure 4, e.g. for each level of noise and each
condition (noisy or enhanced), we have 1088
responses (16 stimuli with 2 vowels, V1V2 and
V2V1 segments, 17 subjects).

Figure 4 shows that the enhancement is
efficient as soon as SNR = 0 dB. The gains
obtained (difference between the enhanced and
noisy conditions) are about 6% at 6 dB, 17.5% at
0 dB, 18.5% at -6 dB, 30% at -12 dB and reach
42.5% at -18 dB.
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Figure 4 – Perceptive test scores

The confusion matrices for the 5 smallest
SNRs are presented in table 1 (the matrices for
the 3 stronger SNRs are almost diagonals and
present less interest).

noisy signals enhanced signals
SNR V a i y u a i y u

a 2 7 1 1 0 0 2 7 2 0 0 1
6 i 1 2 2 3 6 2 0 2 7 0 2 7

dB y 0 37 2 6 0 16 0 2 2 6 0 11
u 0 11 6 2 5 4 0 0 10 2 5 3
a 2 7 1 2 1 17 2 7 2 3 0 0

0 i 0 1 3 1 35 17 0 2 5 3 7 15
dB y 1 104 1 8 7 45 0 14 2 2 2 70

u 0 35 49 2 0 3 0 2 43 1 8 7
a 2 7 2 12 17 15 2 6 8 7 0 1

-6 i 0 9 6 60 60 4 2 4 3 28 22
dB y 0 128 1 5 5 89 0 21 2 2 2 201

u 0 36 40 1 0 8 0 1 22 4 8
a 2 3 4 61 45 42 2 4 7 6 1 3

-12 i 27 1 0 8 94 107 19 2 2 8 18 25
dB y 8 69 8 9 73 6 36 2 2 1 213

u 3 34 44 5 0 0 2 32 3 1
a 1 2 8 129 121 105 1 6 8 26 4 2

-18 i 109 9 5 108 113 77 2 1 1 23 15
dB y 24 37 2 9 44 20 33 2 1 8 225

u 11 11 14 1 0 7 2 27 3 0

Table 1 – Confusion matrices for the perceptive test.
The left matrices are for the noisy condition,

the right matrices are for the enhanced condition.

The main performances of our system can be
summarized as follows:

1) the disambiguisation of the [i, y]
contrast, which is strongly degraded in noise
before enhancement. This case represents a good
example of the audio/video complementarity of
speech (robust video distinction while small
audio robustness in noise).

2) the relative disambiguisation of the [a, i]
confusion. This appears only for strong noise,

since the [a] sound is very robust in noise and
the [a, i] lip shapes are not so easily distinctive in
dynamic speech compared to static vowels (see
[1]). The process works better from [a] to [i]
than [i] to [a].

3) the reinforcement of the rounding
feature ([y] and [u] are well contrasted with [a]
and [i]), which unfortunately leads to the
confusion of [u] and [y] for high levels of noise.
The poor audio information retrieval in that case
remains a weak point of the fusion process.

6. CONCLUSION

We have presented in this paper an original
method for noisy speech enhancement using
both noisy audio information and the speaker's
lip pattern. Its implementation within the scope
of vocalic transitions has shown that a good
enhancement of the signals can be obtained
from the complementarity between the auditory
and visual modalities. These results are very
promising for the future step of our work, which
will involve the dynamic processing of vowel-
consonant transitions.

7. AUDIO EXAMPLE

The sound example given contains the
three following transitions [aia], [uyu] and [iui].
Each transition is given successively in the noisy
and enhanced conditions. The SNR is 0 dB.
[sound A0003S01.WAV]
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