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ABSTRACT

This paper describes a cross-validation method to determine the
appropriate weight with which dynamic constraints should be
applied when estimating vocal tract shapes from speech. This
data-dependent method can estimate the weighting without the
need for separate prior knowledge of the source and noise statis-
tics.

The principles are first demonstrated on a simple one-
dimensional system analogous to speech production. As the data
here is synthetic, the statistics are known, and so the success of
the method can be objectively assessed.

Next, the same principles are extended to real speech to improve
the estimation of vocal tract shape trajectories.

1 INTRODUCTION

For speech coding, recognition, and synthesis, it is believed that
an articulatory description may be preferable to conventional
acoustic features because physical limitations of the vocal tract
imply slowly changing parameters. Also, the close relationship
between the articulatory and phonetic domains suggests that an
articulatory parameter set could be a more appropriate represen-
tation for recognition.

Despite such attractions, articulatory parameters are not com-
monly used because of the difficulty in estimating them from
speech. There is a complex mapping between the acoustic and
articulatory domains, which is both non-linear and non-unique
[1] [2]. Such a relationship requires the use of non-linear map-
ping techniques such as neural networks, non-linear regression
or the use of articulatory codebooks as reviewed in [2].

In previous work we have attempted to overcome the difficul-
ties mentioned by using articulatory codebooks with a dynamic
programming search to impose dynamic constraints on the es-
timated vocal tract shape sequences [3]. Unvoiced sounds pose
a particular problem for vocal tract shape estimation, as the ob-
served acoustic signal carries very little information about the
vocal tract shape behind the constriction. Previously, we have
addressed this problem by extending the dynamic programming
method [4].

Also in recent work, we have addressed the problem of computa-
tion associated with the dynamic programming approach by de-
veloping an alternative method using MLP analysis-by-synthesis
[5]. Here, an MLP is used to synthesise speech spectra from a
hypothesised vocal tract shape sequence. This is compared with
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Figure 1: A block diagram of the speech production model. A
Gaussian function drives an integrator to produce the articulatory
trajectories, which are then mapped through a non-linear system
and distorted by additive noise to give the observed acoustic pat-
tern.

the observed speech, and the hypothesis altered to give an im-
proved match. This cycle is repeated until the hypothesis con-
verges to a solution. The problem of local minima in the solution
space was also addressed. These were avoided by optimising for
a hierarchy of MLPs of increasing complexity.

The central task in either the articulatory codebook or the MLP
analysis-by-synthesis approach is the minimisation of an objec-
tive cost function that can be justified with reference to a very
simple model of the way that the observed acoustic pattern is
produced from a changing vocal tract shape. In Figure 1 the pa-
rameter vectorA(t) of the vocal tract shape at timet executes a
random walk (Brownian motion), and the acoustic vector is some
non-linear function ofA(t), modified by observation noise. The
objective criterion of Equation 1 can be derived from a model of
the form shown in Figure 1 via the log likelihood of the observa-
tions given such a model. It is also possible to use higher order
models than the integrator in Figure 1 [5].
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The two components of this cost function are combined using a
weighting factor,k, which applies an appropriate scaling to the
two costs. This weighting is required because the units of the two
components of Equation 1 are different. It can be shown that the
best value fork is equal to the ratio of the variances ofg(t) and
n(t) in the model of Figure 1. Previously, we have estimated a
suitable value for this constant by making estimates of these two
variances. This has involved making assumptions about the rate
of articulator movement, and comparing this with average cep-
stral distances. Other authors have employed a more heuristic
approach, for example Schroeteret al. [2] set the weighting ac-
cording to the change in the acoustic parameters, whereas Yehia
et al. [6] based their weighting upon the certainty of the acoustic
measurements.



The purpose of this paper is to describe a data-dependent method
which estimates a value fork based solely upon the acoustic
signal.

2 ESTIMATING THE COST
WEIGHTING

As we have discussed in previous work [3], different values of
k are appropriate for different speech sounds and levels of back-
ground noise. For example, during quiet periods of speech, such
as during a stop closure, the effective variance ofn(t) in Figure 1
increases. This is due to the logarithmic compression employed
in most acoustic representations, which makes them much more
sensitive to additive noise at low signal powers. Consequently,
k should be lowered in this case to weight less heavily the now
unreliable acoustics.

In this paper we consider just one case, namely vocalic sounds
of a fixed signal-to-noise ratio, but the principles are readily ex-
tendable to a time-varyingk, which could be determined by the
speech class and the prevailing signal-to-noise ratio.

The observation noise,n(t) in Figure 1, models the uncertainty
in the observed spectrum due to additive noise, etc., but together
with g(t), must also absorb the error in the mappingf(A) and
the dynamic model. This is because our approximation to the
articulatory-acoustic mapping, and likewise the first-order dy-
namic model, is not exact for any given speaker or speech seg-
ment.

Our data-dependent technique consists of estimating vocal tract
shape trajectories for different values ofk, using either of the
techniques that minimise the cost function in Equation 1, and
then comparing the results to see which value ofk gives the
shape trajectories with the best acoustic fit to the observed data.
A glance at the cost function of Equation 1 reveals an obvious
flaw in this method: we expect that the largest value ofk will al-
ways give the best acoustic fit to the observed data, as the largest
value ofk gives the greatest weight to the acoustic match. For
this reason we have applied the principles ofcross-validationto
the estimation ofk, which allows us to assess the performance
of the estimated trajectories on observed data not used in the op-
timisation.

To do this, the acoustic data is divided intoN sets, one set re-
served for validation, and the remaining acoustic information
used to estimate the articulatory sequence,A(t), for a given
value ofk. The acoustic error for the validation set, given this se-
quence, gives us the validation error. If this is summed over the
N sets (selecting each set for validation in turn), and repeated
for different values ofk, the value which gives the minimum
validation error can then be chosen.

3 TESTING THE METHOD

To give an insight into the proposed method, first we apply it
to a much simpler, but analogous, problem. A one-dimensional
version of the system shown in Figure 1, with a sigmoid non-
linearity used forf(A) and Gaussian driving and noise functions
g(t) andn(t), is used to generate a time sequence of observation
datao(t) (Figure 2(c)). By generating the data for this problem
artificially, the desired sequencesA(t) and c(t) are available,
and so the performance of the technique can be objectively as-
sessed.
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Figure 2: Artificial data for (a)A(t), (b) c(t) and (c)o(t) cor-
responding to the system of Figure 1.
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Figure 3: Errors for training and cross-validation data for differ-
ent values ofk when used to analyse the observation sequence
o(t) in Figure 2(c). The real error with respect to the undistorted
datac(t) is also shown for comparison.



The observation data,o(t), is divided into five sets. This could
be done randomly, but as the time-sequence data has a natural
order, the members of each set were chosen at equal intervals in
the sequence. Each time, a set was excluded, and the remaining
data used to estimate theA(t) sequence using the same analysis-
by-synthesis method described in [5]. The values ofA(t) for
the unseen observations ino(t), that is every fifth sample, were
interpolated from the estimates for the available data via the in-
ferred vocal tract shape trajectoryA(t).

It can be seen from Figure 3 that the ‘acoustic’ error for the train-
ing set decreases monotonically with increasingk, as expected.
The cross-validation error also decreases at first, but after a point
the error starts to rise again as the underlying dynamic model is
neglected and predictions for the unseen data become worse.

Also shown in Figure 3 is the error of the estimated undistorted
vocal tract outputc(t) with respect to that actually used in the
generation ofo(t). It can be seen that the minimum of this error
curve is close to the position predicted by the cross-validation
error.

4 REAL SPEECH

The principles of the previous section have also been applied to
vocal tract shape estimation from speech for the two methods
that we have previously used: articulatory codebooks with a dy-
namic programming search [3] and MLP Analysis-by-Synthesis
[5].

Training and validation error profiles are shown for the two tech-
niques in Figures 4(a) and (b). The real speech used here was a
single utterance of ‘Why were you away a year Roy?’, and this
was tested for a range ofk from 0.001 to 100.

As the articulatory codebook method employs a global exhaus-
tive search, then the curves shown in Figure 4(a) are very much
as expected. The acoustic error with respect to the ‘training’
data here decreases monotonically withk as increasingly more
emphasis is placed on the acoustic match in Equation 1. The
cross-validation error decreases to an unstable minimum at ap-
proximatelyk = 1, before rising slowly again with increasing
k. It should be possible to stabilise this curve with the addition
of more speech data.

The error curves for the MLP analysis-by-synthesis method,
however, do not behave in the same way. Figure 4(b) shows that
the training error here does in fact have a minimum point at about
k = 0:5. This means that despite placing an increasing emphasis
on the acoustic match in Equation 1, the actual acoustic match
achieved degrades. From this we can conclude that the dynamic
constraints are instrumental in aiding the iterative search to find
the best minimum in the cost function given in Equation 1. When
the regulation provided by the dynamic constraints is removed,
then the search is more likely to become trapped in a local mini-
mum. The cross-validation error, however, behaves as expected,
reaching a minimum at aboutk = 0:1. The curve has a much
more definite minimum than that for the articulatory codebook
method, perhaps not surprisingly as the minimum point in the
training error curve implies a minimum in the cross-validation
error curve here.

The different estimated values fork in Figures 4(a) and 4(b) can
be explained by differences expected in the variances ofg(t) and
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Figure 4: Training and cross-validation error for different values
of k for (a) the dynamic programming and (b) MLP analysis-by-
synthesis methods.

n(t) for the two methods. In the articulatory codebook method,
the vectorA can assume a only fixed number of quantised shapes
depending on the codebook size (a 50625 shape codebook is
used here). In effect,n(t) here models not only the observa-
tion noise, but also the quantisation noise introduced by the ar-
ticulatory codebook. The larger the codebook, the smaller this
quantisation noise becomes.

For the continuous MLP analysis-by-synthesis method, however,
as the acoustic output is no longer restricted to a discrete number
of values, this variance accounts only for the observation noise
and the discrepancy between the real articulatory-acoustic map-
ping and our approximation of it (given by the MLP).

Similarly, the variance ofg(t) for the dynamic programming
method is not only dependent on the articulatory dynamics, but
also on the codebook sampling in articulatory space. The higher
the resolution of the articulatory sampling, the smaller this vari-
ance becomes.

Vocal tract shapes estimated from speech using different values
of k are shown in Figure 5. The articulatory codebook method
has been used here. In Figure 5(c) (k = 100) it can be seen that
the parameters change very rapidly with time. This is because
dynamic constraints are given little emphasis, and so continu-
ity is sacrificed in order to improve the spectral fit. Figure 5(b)
shows the parameter trajectories estimated using a value fork
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Figure 5: Articulatory codebook derived articulatory parameter
trajectories fork = 0:01, 1:0 and100 in (a) to (c) respectively..

very close to the ideal value suggested by Figure 4(a). Here the
trajectories are much smoother, bearing in mind the quantisation
effect of the articulatory codebook.

The estimated articulatory trajectories fork = 0:01 are shown
in Figure 5(a). Changes in the articulatory parameters are heav-
ily penalised in the dynamic programming search here. These
trajectories are not as flat as might be expected, however, as for
computational reasons the search is limited to the n-best acoustic
fits from the codebook [3]. For example, using a similar value
for k in the MLP analysis-by-synthesis approach yields flat tra-
jectories.

Spectrograms of speech synthesised from these trajectories are
shown in Figures 6(b) to (d) respectively. The improved spectral
fit for the highest value ofk can be seen in Figure 6(d), whereas
this fit is noticeably degraded in the ‘damped’ spectrogram in
Figure 6(c), and even more so in Figure 6(b).

The articulatory estimates in Figure 5(b) therefore represent a
compromise between spectral fit and articulatory continuity. As
we use the ideal value ofk here, they also represent the expected
observation sequence, given the form of the production model
assumed (Figure 1). If the spectrogram in 6(c) does not approx-
imate the original speech in Figure 6(a) very well, it is an in-
dication that this underlying model of speech production could
be improved. This is not surprising, considering its simple first-
order dynamic component.

5 CONCLUSIONS

A cross-validation method has been proposed to estimate an ap-
propriate value for the weighting of dynamic constraints to yield
the best vocal tract shape estimates from speech. This method
has the advantage that only acoustic observations are necessary
to estimate this weighting.

Artificial data with known statistics has been used to validate the
approach, and the method has also been shown to give reason-
able results on real data.
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Figure 6: Speech spectrograms synthesised from the vocal tract
parameters shown in Figure 5 fork = 0:01, 1:0 and 100 in
(b) to (d) respectively.. The original speech is shown in (a) for
comparison.

However, it is likely that the vocal tract system is far from
first order, and the Gaussian assumptions for the driving func-
tion and noise are not realistic, partly because the uncertainty
they model must also account for the mismatch between the
real articulatory-acoustic mapping and our approximation of it,
f(A).
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